Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumcom
Next ⟩
gsumcom3
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsumcom
Description:
Commute the arguments of a double sum.
(Contributed by
Mario Carneiro
, 28-Dec-2014)
Ref
Expression
Hypotheses
gsumxp.b
⊢
B
=
Base
G
gsumxp.z
⊢
0
˙
=
0
G
gsumxp.g
⊢
φ
→
G
∈
CMnd
gsumxp.a
⊢
φ
→
A
∈
V
gsumxp.r
⊢
φ
→
C
∈
W
gsumcom.f
⊢
φ
∧
j
∈
A
∧
k
∈
C
→
X
∈
B
gsumcom.u
⊢
φ
→
U
∈
Fin
gsumcom.n
⊢
φ
∧
j
∈
A
∧
k
∈
C
∧
¬
j
U
k
→
X
=
0
˙
Assertion
gsumcom
⊢
φ
→
∑
G
j
∈
A
,
k
∈
C
⟼
X
=
∑
G
k
∈
C
,
j
∈
A
⟼
X
Proof
Step
Hyp
Ref
Expression
1
gsumxp.b
⊢
B
=
Base
G
2
gsumxp.z
⊢
0
˙
=
0
G
3
gsumxp.g
⊢
φ
→
G
∈
CMnd
4
gsumxp.a
⊢
φ
→
A
∈
V
5
gsumxp.r
⊢
φ
→
C
∈
W
6
gsumcom.f
⊢
φ
∧
j
∈
A
∧
k
∈
C
→
X
∈
B
7
gsumcom.u
⊢
φ
→
U
∈
Fin
8
gsumcom.n
⊢
φ
∧
j
∈
A
∧
k
∈
C
∧
¬
j
U
k
→
X
=
0
˙
9
5
adantr
⊢
φ
∧
j
∈
A
→
C
∈
W
10
ancom
⊢
j
∈
A
∧
k
∈
C
↔
k
∈
C
∧
j
∈
A
11
10
a1i
⊢
φ
→
j
∈
A
∧
k
∈
C
↔
k
∈
C
∧
j
∈
A
12
1
2
3
4
9
6
7
8
5
11
gsumcom2
⊢
φ
→
∑
G
j
∈
A
,
k
∈
C
⟼
X
=
∑
G
k
∈
C
,
j
∈
A
⟼
X