Metamath Proof Explorer


Theorem gsumcom

Description: Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses gsumxp.b B = Base G
gsumxp.z 0 ˙ = 0 G
gsumxp.g φ G CMnd
gsumxp.a φ A V
gsumxp.r φ C W
gsumcom.f φ j A k C X B
gsumcom.u φ U Fin
gsumcom.n φ j A k C ¬ j U k X = 0 ˙
Assertion gsumcom φ G j A , k C X = G k C , j A X

Proof

Step Hyp Ref Expression
1 gsumxp.b B = Base G
2 gsumxp.z 0 ˙ = 0 G
3 gsumxp.g φ G CMnd
4 gsumxp.a φ A V
5 gsumxp.r φ C W
6 gsumcom.f φ j A k C X B
7 gsumcom.u φ U Fin
8 gsumcom.n φ j A k C ¬ j U k X = 0 ˙
9 5 adantr φ j A C W
10 ancom j A k C k C j A
11 10 a1i φ j A k C k C j A
12 1 2 3 4 9 6 7 8 5 11 gsumcom2 φ G j A , k C X = G k C , j A X