Metamath Proof Explorer


Theorem gsumcom3

Description: A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015)

Ref Expression
Hypotheses gsumcom3.b B = Base G
gsumcom3.z 0 ˙ = 0 G
gsumcom3.g φ G CMnd
gsumcom3.a φ A V
gsumcom3.r φ C W
gsumcom3.f φ j A k C X B
gsumcom3.u φ U Fin
gsumcom3.n φ j A k C ¬ j U k X = 0 ˙
Assertion gsumcom3 φ G j A G k C X = G k C G j A X

Proof

Step Hyp Ref Expression
1 gsumcom3.b B = Base G
2 gsumcom3.z 0 ˙ = 0 G
3 gsumcom3.g φ G CMnd
4 gsumcom3.a φ A V
5 gsumcom3.r φ C W
6 gsumcom3.f φ j A k C X B
7 gsumcom3.u φ U Fin
8 gsumcom3.n φ j A k C ¬ j U k X = 0 ˙
9 1 2 3 4 5 6 7 8 gsumcom φ G j A , k C X = G k C , j A X
10 5 adantr φ j A C W
11 1 2 3 4 10 6 7 8 gsum2d2 φ G j A , k C X = G j A G k C X
12 4 adantr φ k C A V
13 6 ancom2s φ k C j A X B
14 cnvfi U Fin U -1 Fin
15 7 14 syl φ U -1 Fin
16 ancom k C j A j A k C
17 vex k V
18 vex j V
19 17 18 brcnv k U -1 j j U k
20 19 notbii ¬ k U -1 j ¬ j U k
21 16 20 anbi12i k C j A ¬ k U -1 j j A k C ¬ j U k
22 21 8 sylan2b φ k C j A ¬ k U -1 j X = 0 ˙
23 1 2 3 5 12 13 15 22 gsum2d2 φ G k C , j A X = G k C G j A X
24 9 11 23 3eqtr3d φ G j A G k C X = G k C G j A X