Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumcom3fi
Next ⟩
gsumxp2
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsumcom3fi
Description:
A commutative law for finite iterated sums.
(Contributed by
Stefan O'Rear
, 5-Sep-2015)
Ref
Expression
Hypotheses
gsumcom3fi.b
⊢
B
=
Base
G
gsumcom3fi.g
⊢
φ
→
G
∈
CMnd
gsumcom3fi.a
⊢
φ
→
A
∈
Fin
gsumcom3fi.r
⊢
φ
→
C
∈
Fin
gsumcom3fi.f
⊢
φ
∧
j
∈
A
∧
k
∈
C
→
X
∈
B
Assertion
gsumcom3fi
⊢
φ
→
∑
G
j
∈
A
∑
G
k
∈
C
X
=
∑
G
k
∈
C
∑
G
j
∈
A
X
Proof
Step
Hyp
Ref
Expression
1
gsumcom3fi.b
⊢
B
=
Base
G
2
gsumcom3fi.g
⊢
φ
→
G
∈
CMnd
3
gsumcom3fi.a
⊢
φ
→
A
∈
Fin
4
gsumcom3fi.r
⊢
φ
→
C
∈
Fin
5
gsumcom3fi.f
⊢
φ
∧
j
∈
A
∧
k
∈
C
→
X
∈
B
6
eqid
⊢
0
G
=
0
G
7
xpfi
⊢
A
∈
Fin
∧
C
∈
Fin
→
A
×
C
∈
Fin
8
3
4
7
syl2anc
⊢
φ
→
A
×
C
∈
Fin
9
brxp
⊢
j
A
×
C
k
↔
j
∈
A
∧
k
∈
C
10
9
biimpri
⊢
j
∈
A
∧
k
∈
C
→
j
A
×
C
k
11
10
adantl
⊢
φ
∧
j
∈
A
∧
k
∈
C
→
j
A
×
C
k
12
11
pm2.24d
⊢
φ
∧
j
∈
A
∧
k
∈
C
→
¬
j
A
×
C
k
→
X
=
0
G
13
12
impr
⊢
φ
∧
j
∈
A
∧
k
∈
C
∧
¬
j
A
×
C
k
→
X
=
0
G
14
1
6
2
3
4
5
8
13
gsumcom3
⊢
φ
→
∑
G
j
∈
A
∑
G
k
∈
C
X
=
∑
G
k
∈
C
∑
G
j
∈
A
X