Metamath Proof Explorer


Theorem gsumcom3fi

Description: A commutative law for finite iterated sums. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses gsumcom3fi.b B = Base G
gsumcom3fi.g φ G CMnd
gsumcom3fi.a φ A Fin
gsumcom3fi.r φ C Fin
gsumcom3fi.f φ j A k C X B
Assertion gsumcom3fi φ G j A G k C X = G k C G j A X

Proof

Step Hyp Ref Expression
1 gsumcom3fi.b B = Base G
2 gsumcom3fi.g φ G CMnd
3 gsumcom3fi.a φ A Fin
4 gsumcom3fi.r φ C Fin
5 gsumcom3fi.f φ j A k C X B
6 eqid 0 G = 0 G
7 xpfi A Fin C Fin A × C Fin
8 3 4 7 syl2anc φ A × C Fin
9 brxp j A × C k j A k C
10 9 biimpri j A k C j A × C k
11 10 adantl φ j A k C j A × C k
12 11 pm2.24d φ j A k C ¬ j A × C k X = 0 G
13 12 impr φ j A k C ¬ j A × C k X = 0 G
14 1 6 2 3 4 5 8 13 gsumcom3 φ G j A G k C X = G k C G j A X