| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumconst.b |
|
| 2 |
|
gsumconst.m |
|
| 3 |
|
simpl3 |
|
| 4 |
|
eqid |
|
| 5 |
1 4 2
|
mulg0 |
|
| 6 |
3 5
|
syl |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
adantl |
|
| 9 |
|
hash0 |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
mpteq1 |
|
| 13 |
12
|
adantl |
|
| 14 |
|
mpt0 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
15
|
oveq2d |
|
| 17 |
4
|
gsum0 |
|
| 18 |
16 17
|
eqtrdi |
|
| 19 |
6 11 18
|
3eqtr4rd |
|
| 20 |
19
|
ex |
|
| 21 |
|
simprl |
|
| 22 |
|
nnuz |
|
| 23 |
21 22
|
eleqtrdi |
|
| 24 |
|
simpr |
|
| 25 |
|
simpl3 |
|
| 26 |
25
|
adantr |
|
| 27 |
|
eqid |
|
| 28 |
27
|
fvmpt2 |
|
| 29 |
24 26 28
|
syl2anc |
|
| 30 |
|
f1of |
|
| 31 |
30
|
ad2antll |
|
| 32 |
31
|
ffvelcdmda |
|
| 33 |
31
|
feqmptd |
|
| 34 |
|
eqidd |
|
| 35 |
|
eqidd |
|
| 36 |
32 33 34 35
|
fmptco |
|
| 37 |
36
|
fveq1d |
|
| 38 |
37
|
adantr |
|
| 39 |
|
elfznn |
|
| 40 |
|
fvconst2g |
|
| 41 |
25 39 40
|
syl2an |
|
| 42 |
29 38 41
|
3eqtr4d |
|
| 43 |
23 42
|
seqfveq |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
|
simpl1 |
|
| 47 |
|
simpl2 |
|
| 48 |
25
|
adantr |
|
| 49 |
48
|
fmpttd |
|
| 50 |
|
eqidd |
|
| 51 |
1 44 45
|
elcntzsn |
|
| 52 |
25 51
|
syl |
|
| 53 |
25 50 52
|
mpbir2and |
|
| 54 |
53
|
snssd |
|
| 55 |
|
snidg |
|
| 56 |
25 55
|
syl |
|
| 57 |
56
|
adantr |
|
| 58 |
57
|
fmpttd |
|
| 59 |
58
|
frnd |
|
| 60 |
45
|
cntzidss |
|
| 61 |
54 59 60
|
syl2anc |
|
| 62 |
|
f1of1 |
|
| 63 |
62
|
ad2antll |
|
| 64 |
|
suppssdm |
|
| 65 |
|
eqid |
|
| 66 |
65
|
dmmptss |
|
| 67 |
66
|
a1i |
|
| 68 |
64 67
|
sstrid |
|
| 69 |
|
f1ofo |
|
| 70 |
|
forn |
|
| 71 |
69 70
|
syl |
|
| 72 |
71
|
ad2antll |
|
| 73 |
68 72
|
sseqtrrd |
|
| 74 |
|
eqid |
|
| 75 |
1 4 44 45 46 47 49 61 21 63 73 74
|
gsumval3 |
|
| 76 |
|
eqid |
|
| 77 |
1 44 2 76
|
mulgnn |
|
| 78 |
21 25 77
|
syl2anc |
|
| 79 |
43 75 78
|
3eqtr4d |
|
| 80 |
79
|
expr |
|
| 81 |
80
|
exlimdv |
|
| 82 |
81
|
expimpd |
|
| 83 |
|
fz1f1o |
|
| 84 |
83
|
3ad2ant2 |
|
| 85 |
20 82 84
|
mpjaod |
|