Metamath Proof Explorer


Theorem gsumconst

Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gsumconst.b B = Base G
gsumconst.m · ˙ = G
Assertion gsumconst G Mnd A Fin X B G k A X = A · ˙ X

Proof

Step Hyp Ref Expression
1 gsumconst.b B = Base G
2 gsumconst.m · ˙ = G
3 simpl3 G Mnd A Fin X B A = X B
4 eqid 0 G = 0 G
5 1 4 2 mulg0 X B 0 · ˙ X = 0 G
6 3 5 syl G Mnd A Fin X B A = 0 · ˙ X = 0 G
7 fveq2 A = A =
8 7 adantl G Mnd A Fin X B A = A =
9 hash0 = 0
10 8 9 eqtrdi G Mnd A Fin X B A = A = 0
11 10 oveq1d G Mnd A Fin X B A = A · ˙ X = 0 · ˙ X
12 mpteq1 A = k A X = k X
13 12 adantl G Mnd A Fin X B A = k A X = k X
14 mpt0 k X =
15 13 14 eqtrdi G Mnd A Fin X B A = k A X =
16 15 oveq2d G Mnd A Fin X B A = G k A X = G
17 4 gsum0 G = 0 G
18 16 17 eqtrdi G Mnd A Fin X B A = G k A X = 0 G
19 6 11 18 3eqtr4rd G Mnd A Fin X B A = G k A X = A · ˙ X
20 19 ex G Mnd A Fin X B A = G k A X = A · ˙ X
21 simprl G Mnd A Fin X B A f : 1 A 1-1 onto A A
22 nnuz = 1
23 21 22 eleqtrdi G Mnd A Fin X B A f : 1 A 1-1 onto A A 1
24 simpr G Mnd A Fin X B A f : 1 A 1-1 onto A x 1 A x 1 A
25 simpl3 G Mnd A Fin X B A f : 1 A 1-1 onto A X B
26 25 adantr G Mnd A Fin X B A f : 1 A 1-1 onto A x 1 A X B
27 eqid x 1 A X = x 1 A X
28 27 fvmpt2 x 1 A X B x 1 A X x = X
29 24 26 28 syl2anc G Mnd A Fin X B A f : 1 A 1-1 onto A x 1 A x 1 A X x = X
30 f1of f : 1 A 1-1 onto A f : 1 A A
31 30 ad2antll G Mnd A Fin X B A f : 1 A 1-1 onto A f : 1 A A
32 31 ffvelrnda G Mnd A Fin X B A f : 1 A 1-1 onto A x 1 A f x A
33 31 feqmptd G Mnd A Fin X B A f : 1 A 1-1 onto A f = x 1 A f x
34 eqidd G Mnd A Fin X B A f : 1 A 1-1 onto A k A X = k A X
35 eqidd k = f x X = X
36 32 33 34 35 fmptco G Mnd A Fin X B A f : 1 A 1-1 onto A k A X f = x 1 A X
37 36 fveq1d G Mnd A Fin X B A f : 1 A 1-1 onto A k A X f x = x 1 A X x
38 37 adantr G Mnd A Fin X B A f : 1 A 1-1 onto A x 1 A k A X f x = x 1 A X x
39 elfznn x 1 A x
40 fvconst2g X B x × X x = X
41 25 39 40 syl2an G Mnd A Fin X B A f : 1 A 1-1 onto A x 1 A × X x = X
42 29 38 41 3eqtr4d G Mnd A Fin X B A f : 1 A 1-1 onto A x 1 A k A X f x = × X x
43 23 42 seqfveq G Mnd A Fin X B A f : 1 A 1-1 onto A seq 1 + G k A X f A = seq 1 + G × X A
44 eqid + G = + G
45 eqid Cntz G = Cntz G
46 simpl1 G Mnd A Fin X B A f : 1 A 1-1 onto A G Mnd
47 simpl2 G Mnd A Fin X B A f : 1 A 1-1 onto A A Fin
48 25 adantr G Mnd A Fin X B A f : 1 A 1-1 onto A k A X B
49 48 fmpttd G Mnd A Fin X B A f : 1 A 1-1 onto A k A X : A B
50 eqidd G Mnd A Fin X B A f : 1 A 1-1 onto A X + G X = X + G X
51 1 44 45 elcntzsn X B X Cntz G X X B X + G X = X + G X
52 25 51 syl G Mnd A Fin X B A f : 1 A 1-1 onto A X Cntz G X X B X + G X = X + G X
53 25 50 52 mpbir2and G Mnd A Fin X B A f : 1 A 1-1 onto A X Cntz G X
54 53 snssd G Mnd A Fin X B A f : 1 A 1-1 onto A X Cntz G X
55 snidg X B X X
56 25 55 syl G Mnd A Fin X B A f : 1 A 1-1 onto A X X
57 56 adantr G Mnd A Fin X B A f : 1 A 1-1 onto A k A X X
58 57 fmpttd G Mnd A Fin X B A f : 1 A 1-1 onto A k A X : A X
59 58 frnd G Mnd A Fin X B A f : 1 A 1-1 onto A ran k A X X
60 45 cntzidss X Cntz G X ran k A X X ran k A X Cntz G ran k A X
61 54 59 60 syl2anc G Mnd A Fin X B A f : 1 A 1-1 onto A ran k A X Cntz G ran k A X
62 f1of1 f : 1 A 1-1 onto A f : 1 A 1-1 A
63 62 ad2antll G Mnd A Fin X B A f : 1 A 1-1 onto A f : 1 A 1-1 A
64 suppssdm k A X supp 0 G dom k A X
65 eqid k A X = k A X
66 65 dmmptss dom k A X A
67 66 a1i G Mnd A Fin X B A f : 1 A 1-1 onto A dom k A X A
68 64 67 sstrid G Mnd A Fin X B A f : 1 A 1-1 onto A k A X supp 0 G A
69 f1ofo f : 1 A 1-1 onto A f : 1 A onto A
70 forn f : 1 A onto A ran f = A
71 69 70 syl f : 1 A 1-1 onto A ran f = A
72 71 ad2antll G Mnd A Fin X B A f : 1 A 1-1 onto A ran f = A
73 68 72 sseqtrrd G Mnd A Fin X B A f : 1 A 1-1 onto A k A X supp 0 G ran f
74 eqid k A X f supp 0 G = k A X f supp 0 G
75 1 4 44 45 46 47 49 61 21 63 73 74 gsumval3 G Mnd A Fin X B A f : 1 A 1-1 onto A G k A X = seq 1 + G k A X f A
76 eqid seq 1 + G × X = seq 1 + G × X
77 1 44 2 76 mulgnn A X B A · ˙ X = seq 1 + G × X A
78 21 25 77 syl2anc G Mnd A Fin X B A f : 1 A 1-1 onto A A · ˙ X = seq 1 + G × X A
79 43 75 78 3eqtr4d G Mnd A Fin X B A f : 1 A 1-1 onto A G k A X = A · ˙ X
80 79 expr G Mnd A Fin X B A f : 1 A 1-1 onto A G k A X = A · ˙ X
81 80 exlimdv G Mnd A Fin X B A f f : 1 A 1-1 onto A G k A X = A · ˙ X
82 81 expimpd G Mnd A Fin X B A f f : 1 A 1-1 onto A G k A X = A · ˙ X
83 fz1f1o A Fin A = A f f : 1 A 1-1 onto A
84 83 3ad2ant2 G Mnd A Fin X B A = A f f : 1 A 1-1 onto A
85 20 82 84 mpjaod G Mnd A Fin X B G k A X = A · ˙ X