Step |
Hyp |
Ref |
Expression |
1 |
|
gsumconst.b |
|
2 |
|
gsumconst.m |
|
3 |
|
simpl3 |
|
4 |
|
eqid |
|
5 |
1 4 2
|
mulg0 |
|
6 |
3 5
|
syl |
|
7 |
|
fveq2 |
|
8 |
7
|
adantl |
|
9 |
|
hash0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
10
|
oveq1d |
|
12 |
|
mpteq1 |
|
13 |
12
|
adantl |
|
14 |
|
mpt0 |
|
15 |
13 14
|
eqtrdi |
|
16 |
15
|
oveq2d |
|
17 |
4
|
gsum0 |
|
18 |
16 17
|
eqtrdi |
|
19 |
6 11 18
|
3eqtr4rd |
|
20 |
19
|
ex |
|
21 |
|
simprl |
|
22 |
|
nnuz |
|
23 |
21 22
|
eleqtrdi |
|
24 |
|
simpr |
|
25 |
|
simpl3 |
|
26 |
25
|
adantr |
|
27 |
|
eqid |
|
28 |
27
|
fvmpt2 |
|
29 |
24 26 28
|
syl2anc |
|
30 |
|
f1of |
|
31 |
30
|
ad2antll |
|
32 |
31
|
ffvelrnda |
|
33 |
31
|
feqmptd |
|
34 |
|
eqidd |
|
35 |
|
eqidd |
|
36 |
32 33 34 35
|
fmptco |
|
37 |
36
|
fveq1d |
|
38 |
37
|
adantr |
|
39 |
|
elfznn |
|
40 |
|
fvconst2g |
|
41 |
25 39 40
|
syl2an |
|
42 |
29 38 41
|
3eqtr4d |
|
43 |
23 42
|
seqfveq |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
|
simpl1 |
|
47 |
|
simpl2 |
|
48 |
25
|
adantr |
|
49 |
48
|
fmpttd |
|
50 |
|
eqidd |
|
51 |
1 44 45
|
elcntzsn |
|
52 |
25 51
|
syl |
|
53 |
25 50 52
|
mpbir2and |
|
54 |
53
|
snssd |
|
55 |
|
snidg |
|
56 |
25 55
|
syl |
|
57 |
56
|
adantr |
|
58 |
57
|
fmpttd |
|
59 |
58
|
frnd |
|
60 |
45
|
cntzidss |
|
61 |
54 59 60
|
syl2anc |
|
62 |
|
f1of1 |
|
63 |
62
|
ad2antll |
|
64 |
|
suppssdm |
|
65 |
|
eqid |
|
66 |
65
|
dmmptss |
|
67 |
66
|
a1i |
|
68 |
64 67
|
sstrid |
|
69 |
|
f1ofo |
|
70 |
|
forn |
|
71 |
69 70
|
syl |
|
72 |
71
|
ad2antll |
|
73 |
68 72
|
sseqtrrd |
|
74 |
|
eqid |
|
75 |
1 4 44 45 46 47 49 61 21 63 73 74
|
gsumval3 |
|
76 |
|
eqid |
|
77 |
1 44 2 76
|
mulgnn |
|
78 |
21 25 77
|
syl2anc |
|
79 |
43 75 78
|
3eqtr4d |
|
80 |
79
|
expr |
|
81 |
80
|
exlimdv |
|
82 |
81
|
expimpd |
|
83 |
|
fz1f1o |
|
84 |
83
|
3ad2ant2 |
|
85 |
20 82 84
|
mpjaod |
|