Metamath Proof Explorer


Theorem gsumconstf

Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Hypotheses gsumconstf.k _ k X
gsumconstf.b B = Base G
gsumconstf.m · ˙ = G
Assertion gsumconstf G Mnd A Fin X B G k A X = A · ˙ X

Proof

Step Hyp Ref Expression
1 gsumconstf.k _ k X
2 gsumconstf.b B = Base G
3 gsumconstf.m · ˙ = G
4 nfcv _ l X
5 eqidd k = l X = X
6 4 1 5 cbvmpt k A X = l A X
7 6 oveq2i G k A X = G l A X
8 2 3 gsumconst G Mnd A Fin X B G l A X = A · ˙ X
9 7 8 eqtrid G Mnd A Fin X B G k A X = A · ˙ X