Step |
Hyp |
Ref |
Expression |
1 |
|
gsumdixp.b |
|
2 |
|
gsumdixp.t |
|
3 |
|
gsumdixp.z |
|
4 |
|
gsumdixp.i |
|
5 |
|
gsumdixp.j |
|
6 |
|
gsumdixp.r |
|
7 |
|
gsumdixp.x |
|
8 |
|
gsumdixp.y |
|
9 |
|
gsumdixp.xf |
|
10 |
|
gsumdixp.yf |
|
11 |
6
|
ringcmnd |
|
12 |
5
|
adantr |
|
13 |
6
|
adantr |
|
14 |
7
|
fmpttd |
|
15 |
|
simpl |
|
16 |
|
ffvelcdm |
|
17 |
14 15 16
|
syl2an |
|
18 |
8
|
fmpttd |
|
19 |
|
simpr |
|
20 |
|
ffvelcdm |
|
21 |
18 19 20
|
syl2an |
|
22 |
1 2 13 17 21
|
ringcld |
|
23 |
9
|
fsuppimpd |
|
24 |
10
|
fsuppimpd |
|
25 |
|
xpfi |
|
26 |
23 24 25
|
syl2anc |
|
27 |
|
ianor |
|
28 |
|
brxp |
|
29 |
27 28
|
xchnxbir |
|
30 |
|
simprl |
|
31 |
|
eldif |
|
32 |
31
|
biimpri |
|
33 |
30 32
|
sylan |
|
34 |
14
|
adantr |
|
35 |
|
ssidd |
|
36 |
4
|
adantr |
|
37 |
3
|
fvexi |
|
38 |
37
|
a1i |
|
39 |
34 35 36 38
|
suppssr |
|
40 |
33 39
|
syldan |
|
41 |
40
|
oveq1d |
|
42 |
1 2 3
|
ringlz |
|
43 |
13 21 42
|
syl2anc |
|
44 |
43
|
adantr |
|
45 |
41 44
|
eqtrd |
|
46 |
|
simprr |
|
47 |
|
eldif |
|
48 |
47
|
biimpri |
|
49 |
46 48
|
sylan |
|
50 |
18
|
adantr |
|
51 |
|
ssidd |
|
52 |
5
|
adantr |
|
53 |
50 51 52 38
|
suppssr |
|
54 |
49 53
|
syldan |
|
55 |
54
|
oveq2d |
|
56 |
1 2 3
|
ringrz |
|
57 |
13 17 56
|
syl2anc |
|
58 |
57
|
adantr |
|
59 |
55 58
|
eqtrd |
|
60 |
45 59
|
jaodan |
|
61 |
29 60
|
sylan2b |
|
62 |
61
|
anasss |
|
63 |
1 3 11 4 12 22 26 62
|
gsum2d2 |
|
64 |
|
nffvmpt1 |
|
65 |
|
nfcv |
|
66 |
|
nfcv |
|
67 |
64 65 66
|
nfov |
|
68 |
|
nfcv |
|
69 |
|
nfcv |
|
70 |
|
nffvmpt1 |
|
71 |
68 69 70
|
nfov |
|
72 |
|
nfcv |
|
73 |
|
nfcv |
|
74 |
|
fveq2 |
|
75 |
|
fveq2 |
|
76 |
74 75
|
oveqan12d |
|
77 |
67 71 72 73 76
|
cbvmpo |
|
78 |
|
simp2 |
|
79 |
7
|
3adant3 |
|
80 |
|
eqid |
|
81 |
80
|
fvmpt2 |
|
82 |
78 79 81
|
syl2anc |
|
83 |
|
simp3 |
|
84 |
|
eqid |
|
85 |
84
|
fvmpt2 |
|
86 |
83 8 85
|
3imp3i2an |
|
87 |
82 86
|
oveq12d |
|
88 |
87
|
mpoeq3dva |
|
89 |
77 88
|
eqtrid |
|
90 |
89
|
oveq2d |
|
91 |
|
nfcv |
|
92 |
|
nfcv |
|
93 |
|
nfcv |
|
94 |
93 67
|
nfmpt |
|
95 |
91 92 94
|
nfov |
|
96 |
|
nfcv |
|
97 |
74
|
oveq1d |
|
98 |
97
|
mpteq2dv |
|
99 |
|
nfcv |
|
100 |
99 69 70
|
nfov |
|
101 |
75
|
oveq2d |
|
102 |
100 73 101
|
cbvmpt |
|
103 |
98 102
|
eqtrdi |
|
104 |
103
|
oveq2d |
|
105 |
95 96 104
|
cbvmpt |
|
106 |
87
|
3expa |
|
107 |
106
|
mpteq2dva |
|
108 |
107
|
oveq2d |
|
109 |
108
|
mpteq2dva |
|
110 |
105 109
|
eqtrid |
|
111 |
110
|
oveq2d |
|
112 |
63 90 111
|
3eqtr3d |
|
113 |
6
|
adantr |
|
114 |
5
|
adantr |
|
115 |
8
|
adantlr |
|
116 |
10
|
adantr |
|
117 |
1 3 2 113 114 7 115 116
|
gsummulc2 |
|
118 |
117
|
mpteq2dva |
|
119 |
118
|
oveq2d |
|
120 |
1 3 11 5 18 10
|
gsumcl |
|
121 |
1 3 2 6 4 120 7 9
|
gsummulc1 |
|
122 |
112 119 121
|
3eqtrrd |
|