Step |
Hyp |
Ref |
Expression |
1 |
|
gsumdixp.b |
|
2 |
|
gsumdixp.t |
|
3 |
|
gsumdixp.z |
|
4 |
|
gsumdixp.i |
|
5 |
|
gsumdixp.j |
|
6 |
|
gsumdixp.r |
|
7 |
|
gsumdixp.x |
|
8 |
|
gsumdixp.y |
|
9 |
|
gsumdixp.xf |
|
10 |
|
gsumdixp.yf |
|
11 |
|
ringcmn |
|
12 |
6 11
|
syl |
|
13 |
5
|
adantr |
|
14 |
6
|
adantr |
|
15 |
7
|
fmpttd |
|
16 |
|
simpl |
|
17 |
|
ffvelrn |
|
18 |
15 16 17
|
syl2an |
|
19 |
8
|
fmpttd |
|
20 |
|
simpr |
|
21 |
|
ffvelrn |
|
22 |
19 20 21
|
syl2an |
|
23 |
1 2
|
ringcl |
|
24 |
14 18 22 23
|
syl3anc |
|
25 |
9
|
fsuppimpd |
|
26 |
10
|
fsuppimpd |
|
27 |
|
xpfi |
|
28 |
25 26 27
|
syl2anc |
|
29 |
|
ianor |
|
30 |
|
brxp |
|
31 |
29 30
|
xchnxbir |
|
32 |
|
simprl |
|
33 |
|
eldif |
|
34 |
33
|
biimpri |
|
35 |
32 34
|
sylan |
|
36 |
15
|
adantr |
|
37 |
|
ssidd |
|
38 |
4
|
adantr |
|
39 |
3
|
fvexi |
|
40 |
39
|
a1i |
|
41 |
36 37 38 40
|
suppssr |
|
42 |
35 41
|
syldan |
|
43 |
42
|
oveq1d |
|
44 |
1 2 3
|
ringlz |
|
45 |
14 22 44
|
syl2anc |
|
46 |
45
|
adantr |
|
47 |
43 46
|
eqtrd |
|
48 |
|
simprr |
|
49 |
|
eldif |
|
50 |
49
|
biimpri |
|
51 |
48 50
|
sylan |
|
52 |
19
|
adantr |
|
53 |
|
ssidd |
|
54 |
5
|
adantr |
|
55 |
52 53 54 40
|
suppssr |
|
56 |
51 55
|
syldan |
|
57 |
56
|
oveq2d |
|
58 |
1 2 3
|
ringrz |
|
59 |
14 18 58
|
syl2anc |
|
60 |
59
|
adantr |
|
61 |
57 60
|
eqtrd |
|
62 |
47 61
|
jaodan |
|
63 |
31 62
|
sylan2b |
|
64 |
63
|
anasss |
|
65 |
1 3 12 4 13 24 28 64
|
gsum2d2 |
|
66 |
|
nffvmpt1 |
|
67 |
|
nfcv |
|
68 |
|
nfcv |
|
69 |
66 67 68
|
nfov |
|
70 |
|
nfcv |
|
71 |
|
nfcv |
|
72 |
|
nffvmpt1 |
|
73 |
70 71 72
|
nfov |
|
74 |
|
nfcv |
|
75 |
|
nfcv |
|
76 |
|
fveq2 |
|
77 |
|
fveq2 |
|
78 |
76 77
|
oveqan12d |
|
79 |
69 73 74 75 78
|
cbvmpo |
|
80 |
|
simp2 |
|
81 |
7
|
3adant3 |
|
82 |
|
eqid |
|
83 |
82
|
fvmpt2 |
|
84 |
80 81 83
|
syl2anc |
|
85 |
|
simp3 |
|
86 |
|
eqid |
|
87 |
86
|
fvmpt2 |
|
88 |
85 8 87
|
3imp3i2an |
|
89 |
84 88
|
oveq12d |
|
90 |
89
|
mpoeq3dva |
|
91 |
79 90
|
eqtrid |
|
92 |
91
|
oveq2d |
|
93 |
|
nfcv |
|
94 |
|
nfcv |
|
95 |
|
nfcv |
|
96 |
95 69
|
nfmpt |
|
97 |
93 94 96
|
nfov |
|
98 |
|
nfcv |
|
99 |
76
|
oveq1d |
|
100 |
99
|
mpteq2dv |
|
101 |
|
nfcv |
|
102 |
101 71 72
|
nfov |
|
103 |
77
|
oveq2d |
|
104 |
102 75 103
|
cbvmpt |
|
105 |
100 104
|
eqtrdi |
|
106 |
105
|
oveq2d |
|
107 |
97 98 106
|
cbvmpt |
|
108 |
89
|
3expa |
|
109 |
108
|
mpteq2dva |
|
110 |
109
|
oveq2d |
|
111 |
110
|
mpteq2dva |
|
112 |
107 111
|
eqtrid |
|
113 |
112
|
oveq2d |
|
114 |
65 92 113
|
3eqtr3d |
|
115 |
|
eqid |
|
116 |
6
|
adantr |
|
117 |
5
|
adantr |
|
118 |
8
|
adantlr |
|
119 |
10
|
adantr |
|
120 |
1 3 115 2 116 117 7 118 119
|
gsummulc2 |
|
121 |
120
|
mpteq2dva |
|
122 |
121
|
oveq2d |
|
123 |
1 3 12 5 19 10
|
gsumcl |
|
124 |
1 3 115 2 6 4 123 7 9
|
gsummulc1 |
|
125 |
114 122 124
|
3eqtrrd |
|