Metamath Proof Explorer


Theorem gsuminv

Description: Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 4-May-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsuminv.b B = Base G
gsuminv.z 0 ˙ = 0 G
gsuminv.p I = inv g G
gsuminv.g φ G Abel
gsuminv.a φ A V
gsuminv.f φ F : A B
gsuminv.n φ finSupp 0 ˙ F
Assertion gsuminv φ G I F = I G F

Proof

Step Hyp Ref Expression
1 gsuminv.b B = Base G
2 gsuminv.z 0 ˙ = 0 G
3 gsuminv.p I = inv g G
4 gsuminv.g φ G Abel
5 gsuminv.a φ A V
6 gsuminv.f φ F : A B
7 gsuminv.n φ finSupp 0 ˙ F
8 ablcmn G Abel G CMnd
9 4 8 syl φ G CMnd
10 cmnmnd G CMnd G Mnd
11 9 10 syl φ G Mnd
12 1 3 invghm G Abel I G GrpHom G
13 4 12 sylib φ I G GrpHom G
14 ghmmhm I G GrpHom G I G MndHom G
15 13 14 syl φ I G MndHom G
16 1 2 9 11 5 15 6 7 gsummhm φ G I F = I G F