| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							gsummatr01.p | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							gsummatr01.r | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							gsummatr01.0 | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							gsummatr01.s | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							difsnid | 
							   | 
						
						
							| 6 | 
							
								5
							 | 
							eqcomd | 
							   | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant1 | 
							   | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant3 | 
							   | 
						
						
							| 9 | 
							
								8
							 | 
							mpteq1d | 
							   | 
						
						
							| 10 | 
							
								9
							 | 
							oveq2d | 
							   | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							gsummatr01lem3 | 
							   | 
						
						
							| 12 | 
							
								
							 | 
							eqidd | 
							   | 
						
						
							| 13 | 
							
								
							 | 
							fveq1 | 
							   | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1d | 
							   | 
						
						
							| 15 | 
							
								14 2
							 | 
							elrab2 | 
							   | 
						
						
							| 16 | 
							
								
							 | 
							eqeq2 | 
							   | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							   | 
						
						
							| 18 | 
							
								17
							 | 
							anbi2d | 
							   | 
						
						
							| 19 | 
							
								15 18
							 | 
							sylbi | 
							   | 
						
						
							| 20 | 
							
								19
							 | 
							3ad2ant3 | 
							   | 
						
						
							| 21 | 
							
								
							 | 
							iftrue | 
							   | 
						
						
							| 22 | 
							
								
							 | 
							iftrue | 
							   | 
						
						
							| 23 | 
							
								21 22
							 | 
							sylan9eq | 
							   | 
						
						
							| 24 | 
							
								20 23
							 | 
							biimtrdi | 
							   | 
						
						
							| 25 | 
							
								24
							 | 
							imp | 
							   | 
						
						
							| 26 | 
							
								
							 | 
							simp1 | 
							   | 
						
						
							| 27 | 
							
								1 2
							 | 
							gsummatr01lem1 | 
							   | 
						
						
							| 28 | 
							
								27
							 | 
							ancoms | 
							   | 
						
						
							| 29 | 
							
								28
							 | 
							3adant2 | 
							   | 
						
						
							| 30 | 
							
								3
							 | 
							fvexi | 
							   | 
						
						
							| 31 | 
							
								30
							 | 
							a1i | 
							   | 
						
						
							| 32 | 
							
								12 25 26 29 31
							 | 
							ovmpod | 
							   | 
						
						
							| 33 | 
							
								32
							 | 
							3ad2ant3 | 
							   | 
						
						
							| 34 | 
							
								33
							 | 
							oveq2d | 
							   | 
						
						
							| 35 | 
							
								
							 | 
							cmnmnd | 
							   | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							   | 
						
						
							| 37 | 
							
								36
							 | 
							3ad2ant1 | 
							   | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							   | 
						
						
							| 39 | 
							
								
							 | 
							simp1l | 
							   | 
						
						
							| 40 | 
							
								
							 | 
							diffi | 
							   | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							   | 
						
						
							| 42 | 
							
								41
							 | 
							3ad2ant1 | 
							   | 
						
						
							| 43 | 
							
								
							 | 
							eqidd | 
							   | 
						
						
							| 44 | 
							
								
							 | 
							eqeq1 | 
							   | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							   | 
						
						
							| 46 | 
							
								
							 | 
							eqeq1 | 
							   | 
						
						
							| 47 | 
							
								46
							 | 
							ifbid | 
							   | 
						
						
							| 48 | 
							
								47
							 | 
							adantl | 
							   | 
						
						
							| 49 | 
							
								
							 | 
							oveq12 | 
							   | 
						
						
							| 50 | 
							
								45 48 49
							 | 
							ifbieq12d | 
							   | 
						
						
							| 51 | 
							
								
							 | 
							eldifsni | 
							   | 
						
						
							| 52 | 
							
								51
							 | 
							neneqd | 
							   | 
						
						
							| 53 | 
							
								52
							 | 
							iffalsed | 
							   | 
						
						
							| 54 | 
							
								53
							 | 
							adantl | 
							   | 
						
						
							| 55 | 
							
								50 54
							 | 
							sylan9eqr | 
							   | 
						
						
							| 56 | 
							
								
							 | 
							eldifi | 
							   | 
						
						
							| 57 | 
							
								56
							 | 
							adantl | 
							   | 
						
						
							| 58 | 
							
								
							 | 
							simp3 | 
							   | 
						
						
							| 59 | 
							
								1 2
							 | 
							gsummatr01lem1 | 
							   | 
						
						
							| 60 | 
							
								58 56 59
							 | 
							syl2an | 
							   | 
						
						
							| 61 | 
							
								
							 | 
							ovexd | 
							   | 
						
						
							| 62 | 
							
								43 55 57 60 61
							 | 
							ovmpod | 
							   | 
						
						
							| 63 | 
							
								62
							 | 
							3ad2antl3 | 
							   | 
						
						
							| 64 | 
							
								4
							 | 
							eleq2i | 
							   | 
						
						
							| 65 | 
							
								64
							 | 
							2ralbii | 
							   | 
						
						
							| 66 | 
							
								1 2
							 | 
							gsummatr01lem2 | 
							   | 
						
						
							| 67 | 
							
								65 66
							 | 
							biimtrid | 
							   | 
						
						
							| 68 | 
							
								58 56 67
							 | 
							syl2anr | 
							   | 
						
						
							| 69 | 
							
								68
							 | 
							ex | 
							   | 
						
						
							| 70 | 
							
								69
							 | 
							com13 | 
							   | 
						
						
							| 71 | 
							
								70
							 | 
							adantr | 
							   | 
						
						
							| 72 | 
							
								71
							 | 
							imp | 
							   | 
						
						
							| 73 | 
							
								72
							 | 
							3adant1 | 
							   | 
						
						
							| 74 | 
							
								73
							 | 
							imp | 
							   | 
						
						
							| 75 | 
							
								63 74
							 | 
							eqeltrd | 
							   | 
						
						
							| 76 | 
							
								75
							 | 
							ralrimiva | 
							   | 
						
						
							| 77 | 
							
								38 39 42 76
							 | 
							gsummptcl | 
							   | 
						
						
							| 78 | 
							
								
							 | 
							eqid | 
							   | 
						
						
							| 79 | 
							
								38 78 3
							 | 
							mndrid | 
							   | 
						
						
							| 80 | 
							
								37 77 79
							 | 
							syl2anc | 
							   | 
						
						
							| 81 | 
							
								1 2 3 4
							 | 
							gsummatr01lem4 | 
							   | 
						
						
							| 82 | 
							
								81
							 | 
							mpteq2dva | 
							   | 
						
						
							| 83 | 
							
								82
							 | 
							oveq2d | 
							   | 
						
						
							| 84 | 
							
								34 80 83
							 | 
							3eqtrd | 
							   | 
						
						
							| 85 | 
							
								10 11 84
							 | 
							3eqtrd | 
							   |