Step |
Hyp |
Ref |
Expression |
1 |
|
gsummgp0.g |
|
2 |
|
gsummgp0.0 |
|
3 |
|
gsummgp0.r |
|
4 |
|
gsummgp0.n |
|
5 |
|
gsummgp0.a |
|
6 |
|
gsummgp0.e |
|
7 |
|
gsummgp0.b |
|
8 |
|
difsnid |
|
9 |
8
|
eqcomd |
|
10 |
9
|
ad2antrl |
|
11 |
10
|
mpteq1d |
|
12 |
11
|
oveq2d |
|
13 |
|
eqid |
|
14 |
1 13
|
mgpbas |
|
15 |
|
eqid |
|
16 |
1 15
|
mgpplusg |
|
17 |
1
|
crngmgp |
|
18 |
3 17
|
syl |
|
19 |
18
|
adantr |
|
20 |
|
diffi |
|
21 |
4 20
|
syl |
|
22 |
21
|
adantr |
|
23 |
|
simpl |
|
24 |
|
eldifi |
|
25 |
23 24 5
|
syl2an |
|
26 |
|
simprl |
|
27 |
|
neldifsnd |
|
28 |
|
crngring |
|
29 |
3 28
|
syl |
|
30 |
|
ringmnd |
|
31 |
13 2
|
mndidcl |
|
32 |
29 30 31
|
3syl |
|
33 |
32
|
adantr |
|
34 |
|
eleq1 |
|
35 |
34
|
ad2antll |
|
36 |
33 35
|
mpbird |
|
37 |
6
|
adantlr |
|
38 |
14 16 19 22 25 26 27 36 37
|
gsumunsnd |
|
39 |
|
oveq2 |
|
40 |
39
|
ad2antll |
|
41 |
24 5
|
sylan2 |
|
42 |
41
|
ralrimiva |
|
43 |
14 18 21 42
|
gsummptcl |
|
44 |
43
|
adantr |
|
45 |
13 15 2
|
ringrz |
|
46 |
29 44 45
|
syl2an2r |
|
47 |
40 46
|
eqtrd |
|
48 |
12 38 47
|
3eqtrd |
|
49 |
7 48
|
rexlimddv |
|