Metamath Proof Explorer


Theorem gsummgp0

Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019)

Ref Expression
Hypotheses gsummgp0.g G = mulGrp R
gsummgp0.0 0 ˙ = 0 R
gsummgp0.r φ R CRing
gsummgp0.n φ N Fin
gsummgp0.a φ n N A Base R
gsummgp0.e φ n = i A = B
gsummgp0.b φ i N B = 0 ˙
Assertion gsummgp0 φ G n N A = 0 ˙

Proof

Step Hyp Ref Expression
1 gsummgp0.g G = mulGrp R
2 gsummgp0.0 0 ˙ = 0 R
3 gsummgp0.r φ R CRing
4 gsummgp0.n φ N Fin
5 gsummgp0.a φ n N A Base R
6 gsummgp0.e φ n = i A = B
7 gsummgp0.b φ i N B = 0 ˙
8 difsnid i N N i i = N
9 8 eqcomd i N N = N i i
10 9 ad2antrl φ i N B = 0 ˙ N = N i i
11 10 mpteq1d φ i N B = 0 ˙ n N A = n N i i A
12 11 oveq2d φ i N B = 0 ˙ G n N A = G n N i i A
13 eqid Base R = Base R
14 1 13 mgpbas Base R = Base G
15 eqid R = R
16 1 15 mgpplusg R = + G
17 1 crngmgp R CRing G CMnd
18 3 17 syl φ G CMnd
19 18 adantr φ i N B = 0 ˙ G CMnd
20 diffi N Fin N i Fin
21 4 20 syl φ N i Fin
22 21 adantr φ i N B = 0 ˙ N i Fin
23 simpl φ i N B = 0 ˙ φ
24 eldifi n N i n N
25 23 24 5 syl2an φ i N B = 0 ˙ n N i A Base R
26 simprl φ i N B = 0 ˙ i N
27 neldifsnd φ i N B = 0 ˙ ¬ i N i
28 crngring R CRing R Ring
29 3 28 syl φ R Ring
30 ringmnd R Ring R Mnd
31 13 2 mndidcl R Mnd 0 ˙ Base R
32 29 30 31 3syl φ 0 ˙ Base R
33 32 adantr φ i N B = 0 ˙ 0 ˙ Base R
34 eleq1 B = 0 ˙ B Base R 0 ˙ Base R
35 34 ad2antll φ i N B = 0 ˙ B Base R 0 ˙ Base R
36 33 35 mpbird φ i N B = 0 ˙ B Base R
37 6 adantlr φ i N B = 0 ˙ n = i A = B
38 14 16 19 22 25 26 27 36 37 gsumunsnd φ i N B = 0 ˙ G n N i i A = G n N i A R B
39 oveq2 B = 0 ˙ G n N i A R B = G n N i A R 0 ˙
40 39 ad2antll φ i N B = 0 ˙ G n N i A R B = G n N i A R 0 ˙
41 24 5 sylan2 φ n N i A Base R
42 41 ralrimiva φ n N i A Base R
43 14 18 21 42 gsummptcl φ G n N i A Base R
44 43 adantr φ i N B = 0 ˙ G n N i A Base R
45 13 15 2 ringrz R Ring G n N i A Base R G n N i A R 0 ˙ = 0 ˙
46 29 44 45 syl2an2r φ i N B = 0 ˙ G n N i A R 0 ˙ = 0 ˙
47 40 46 eqtrd φ i N B = 0 ˙ G n N i A R B = 0 ˙
48 12 38 47 3eqtrd φ i N B = 0 ˙ G n N A = 0 ˙
49 7 48 rexlimddv φ G n N A = 0 ˙