Metamath Proof Explorer


Theorem gsummhm

Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsummhm.b B = Base G
gsummhm.z 0 ˙ = 0 G
gsummhm.g φ G CMnd
gsummhm.h φ H Mnd
gsummhm.a φ A V
gsummhm.k φ K G MndHom H
gsummhm.f φ F : A B
gsummhm.w φ finSupp 0 ˙ F
Assertion gsummhm φ H K F = K G F

Proof

Step Hyp Ref Expression
1 gsummhm.b B = Base G
2 gsummhm.z 0 ˙ = 0 G
3 gsummhm.g φ G CMnd
4 gsummhm.h φ H Mnd
5 gsummhm.a φ A V
6 gsummhm.k φ K G MndHom H
7 gsummhm.f φ F : A B
8 gsummhm.w φ finSupp 0 ˙ F
9 eqid Cntz G = Cntz G
10 cmnmnd G CMnd G Mnd
11 3 10 syl φ G Mnd
12 1 9 3 7 cntzcmnf φ ran F Cntz G ran F
13 1 9 11 4 5 6 7 12 2 8 gsumzmhm φ H K F = K G F