Metamath Proof Explorer


Theorem gsummhm2

Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsummhm2.b B = Base G
gsummhm2.z 0 ˙ = 0 G
gsummhm2.g φ G CMnd
gsummhm2.h φ H Mnd
gsummhm2.a φ A V
gsummhm2.k φ x B C G MndHom H
gsummhm2.f φ k A X B
gsummhm2.w φ finSupp 0 ˙ k A X
gsummhm2.1 x = X C = D
gsummhm2.2 x = G k A X C = E
Assertion gsummhm2 φ H k A D = E

Proof

Step Hyp Ref Expression
1 gsummhm2.b B = Base G
2 gsummhm2.z 0 ˙ = 0 G
3 gsummhm2.g φ G CMnd
4 gsummhm2.h φ H Mnd
5 gsummhm2.a φ A V
6 gsummhm2.k φ x B C G MndHom H
7 gsummhm2.f φ k A X B
8 gsummhm2.w φ finSupp 0 ˙ k A X
9 gsummhm2.1 x = X C = D
10 gsummhm2.2 x = G k A X C = E
11 7 fmpttd φ k A X : A B
12 1 2 3 4 5 6 11 8 gsummhm φ H x B C k A X = x B C G k A X
13 eqidd φ k A X = k A X
14 eqidd φ x B C = x B C
15 7 13 14 9 fmptco φ x B C k A X = k A D
16 15 oveq2d φ H x B C k A X = H k A D
17 eqid x B C = x B C
18 1 2 3 5 11 8 gsumcl φ G k A X B
19 10 eleq1d x = G k A X C Base H E Base H
20 eqid Base H = Base H
21 1 20 mhmf x B C G MndHom H x B C : B Base H
22 6 21 syl φ x B C : B Base H
23 17 fmpt x B C Base H x B C : B Base H
24 22 23 sylibr φ x B C Base H
25 19 24 18 rspcdva φ E Base H
26 17 10 18 25 fvmptd3 φ x B C G k A X = E
27 12 16 26 3eqtr3d φ H k A D = E