Metamath Proof Explorer


Theorem gsummoncoe1

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019)

Ref Expression
Hypotheses gsummonply1.p P = Poly 1 R
gsummonply1.b B = Base P
gsummonply1.x X = var 1 R
gsummonply1.e × ˙ = mulGrp P
gsummonply1.r φ R Ring
gsummonply1.k K = Base R
gsummonply1.m ˙ = P
gsummonply1.0 0 ˙ = 0 R
gsummonply1.a φ k 0 A K
gsummonply1.f φ finSupp 0 ˙ k 0 A
gsummonply1.l φ L 0
Assertion gsummoncoe1 φ coe 1 P k 0 A ˙ k × ˙ X L = L / k A

Proof

Step Hyp Ref Expression
1 gsummonply1.p P = Poly 1 R
2 gsummonply1.b B = Base P
3 gsummonply1.x X = var 1 R
4 gsummonply1.e × ˙ = mulGrp P
5 gsummonply1.r φ R Ring
6 gsummonply1.k K = Base R
7 gsummonply1.m ˙ = P
8 gsummonply1.0 0 ˙ = 0 R
9 gsummonply1.a φ k 0 A K
10 gsummonply1.f φ finSupp 0 ˙ k 0 A
11 gsummonply1.l φ L 0
12 9 r19.21bi φ k 0 A K
13 12 fmpttd φ k 0 A : 0 K
14 6 fvexi K V
15 14 a1i φ K V
16 nn0ex 0 V
17 elmapg K V 0 V k 0 A K 0 k 0 A : 0 K
18 15 16 17 sylancl φ k 0 A K 0 k 0 A : 0 K
19 13 18 mpbird φ k 0 A K 0
20 8 fvexi 0 ˙ V
21 fsuppmapnn0ub k 0 A K 0 0 ˙ V finSupp 0 ˙ k 0 A s 0 x 0 s < x k 0 A x = 0 ˙
22 19 20 21 sylancl φ finSupp 0 ˙ k 0 A s 0 x 0 s < x k 0 A x = 0 ˙
23 10 22 mpd φ s 0 x 0 s < x k 0 A x = 0 ˙
24 simpr φ s 0 x 0 x 0
25 9 ad2antrr φ s 0 x 0 k 0 A K
26 rspcsbela x 0 k 0 A K x / k A K
27 24 25 26 syl2anc φ s 0 x 0 x / k A K
28 eqid k 0 A = k 0 A
29 28 fvmpts x 0 x / k A K k 0 A x = x / k A
30 24 27 29 syl2anc φ s 0 x 0 k 0 A x = x / k A
31 30 eqeq1d φ s 0 x 0 k 0 A x = 0 ˙ x / k A = 0 ˙
32 31 imbi2d φ s 0 x 0 s < x k 0 A x = 0 ˙ s < x x / k A = 0 ˙
33 32 biimpd φ s 0 x 0 s < x k 0 A x = 0 ˙ s < x x / k A = 0 ˙
34 33 ralimdva φ s 0 x 0 s < x k 0 A x = 0 ˙ x 0 s < x x / k A = 0 ˙
35 eqid 0 P = 0 P
36 1 ply1ring R Ring P Ring
37 ringcmn P Ring P CMnd
38 5 36 37 3syl φ P CMnd
39 38 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ P CMnd
40 5 3ad2ant1 φ k 0 A K R Ring
41 simp3 φ k 0 A K A K
42 simp2 φ k 0 A K k 0
43 eqid mulGrp P = mulGrp P
44 6 1 3 7 43 4 2 ply1tmcl R Ring A K k 0 A ˙ k × ˙ X B
45 40 41 42 44 syl3anc φ k 0 A K A ˙ k × ˙ X B
46 45 3expia φ k 0 A K A ˙ k × ˙ X B
47 46 ralimdva φ k 0 A K k 0 A ˙ k × ˙ X B
48 9 47 mpd φ k 0 A ˙ k × ˙ X B
49 48 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 A ˙ k × ˙ X B
50 simplr φ s 0 x 0 s < x x / k A = 0 ˙ s 0
51 nfv k s < x
52 nfcsb1v _ k x / k A
53 52 nfeq1 k x / k A = 0 ˙
54 51 53 nfim k s < x x / k A = 0 ˙
55 nfv x s < k k / k A = 0 ˙
56 breq2 x = k s < x s < k
57 csbeq1 x = k x / k A = k / k A
58 57 eqeq1d x = k x / k A = 0 ˙ k / k A = 0 ˙
59 56 58 imbi12d x = k s < x x / k A = 0 ˙ s < k k / k A = 0 ˙
60 54 55 59 cbvralw x 0 s < x x / k A = 0 ˙ k 0 s < k k / k A = 0 ˙
61 csbid k / k A = A
62 61 eqeq1i k / k A = 0 ˙ A = 0 ˙
63 oveq1 A = 0 ˙ A ˙ k × ˙ X = 0 ˙ ˙ k × ˙ X
64 1 ply1sca R Ring R = Scalar P
65 5 64 syl φ R = Scalar P
66 65 fveq2d φ 0 R = 0 Scalar P
67 8 66 eqtrid φ 0 ˙ = 0 Scalar P
68 67 ad2antrr φ s 0 k 0 0 ˙ = 0 Scalar P
69 68 oveq1d φ s 0 k 0 0 ˙ ˙ k × ˙ X = 0 Scalar P ˙ k × ˙ X
70 1 ply1lmod R Ring P LMod
71 5 70 syl φ P LMod
72 71 ad2antrr φ s 0 k 0 P LMod
73 eqid Base P = Base P
74 43 73 mgpbas Base P = Base mulGrp P
75 43 ringmgp P Ring mulGrp P Mnd
76 5 36 75 3syl φ mulGrp P Mnd
77 76 ad2antrr φ s 0 k 0 mulGrp P Mnd
78 simpr φ s 0 k 0 k 0
79 3 1 73 vr1cl R Ring X Base P
80 5 79 syl φ X Base P
81 80 ad2antrr φ s 0 k 0 X Base P
82 74 4 77 78 81 mulgnn0cld φ s 0 k 0 k × ˙ X Base P
83 eqid Scalar P = Scalar P
84 eqid 0 Scalar P = 0 Scalar P
85 73 83 7 84 35 lmod0vs P LMod k × ˙ X Base P 0 Scalar P ˙ k × ˙ X = 0 P
86 72 82 85 syl2anc φ s 0 k 0 0 Scalar P ˙ k × ˙ X = 0 P
87 69 86 eqtrd φ s 0 k 0 0 ˙ ˙ k × ˙ X = 0 P
88 63 87 sylan9eqr φ s 0 k 0 A = 0 ˙ A ˙ k × ˙ X = 0 P
89 88 ex φ s 0 k 0 A = 0 ˙ A ˙ k × ˙ X = 0 P
90 62 89 biimtrid φ s 0 k 0 k / k A = 0 ˙ A ˙ k × ˙ X = 0 P
91 90 imim2d φ s 0 k 0 s < k k / k A = 0 ˙ s < k A ˙ k × ˙ X = 0 P
92 91 ralimdva φ s 0 k 0 s < k k / k A = 0 ˙ k 0 s < k A ˙ k × ˙ X = 0 P
93 60 92 biimtrid φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s < k A ˙ k × ˙ X = 0 P
94 93 imp φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s < k A ˙ k × ˙ X = 0 P
95 2 35 39 49 50 94 gsummptnn0fz φ s 0 x 0 s < x x / k A = 0 ˙ P k 0 A ˙ k × ˙ X = P k = 0 s A ˙ k × ˙ X
96 95 fveq2d φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X = coe 1 P k = 0 s A ˙ k × ˙ X
97 96 fveq1d φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = coe 1 P k = 0 s A ˙ k × ˙ X L
98 5 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ R Ring
99 11 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ L 0
100 elfznn0 k 0 s k 0
101 simpll φ s 0 k 0 φ
102 12 adantlr φ s 0 k 0 A K
103 101 78 102 3jca φ s 0 k 0 φ k 0 A K
104 100 103 sylan2 φ s 0 k 0 s φ k 0 A K
105 104 45 syl φ s 0 k 0 s A ˙ k × ˙ X B
106 105 ralrimiva φ s 0 k 0 s A ˙ k × ˙ X B
107 106 adantr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s A ˙ k × ˙ X B
108 fzfid φ s 0 x 0 s < x x / k A = 0 ˙ 0 s Fin
109 1 2 98 99 107 108 coe1fzgsumd φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k = 0 s A ˙ k × ˙ X L = R k = 0 s coe 1 A ˙ k × ˙ X L
110 nfv k φ s 0
111 nfcv _ k 0
112 111 54 nfralw k x 0 s < x x / k A = 0 ˙
113 110 112 nfan k φ s 0 x 0 s < x x / k A = 0 ˙
114 5 ad3antrrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s R Ring
115 12 expcom k 0 φ A K
116 115 100 syl11 φ k 0 s A K
117 116 ad2antrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s A K
118 117 imp φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s A K
119 100 adantl φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s k 0
120 8 6 1 3 7 43 4 coe1tm R Ring A K k 0 coe 1 A ˙ k × ˙ X = n 0 if n = k A 0 ˙
121 114 118 119 120 syl3anc φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s coe 1 A ˙ k × ˙ X = n 0 if n = k A 0 ˙
122 eqeq1 n = L n = k L = k
123 122 ifbid n = L if n = k A 0 ˙ = if L = k A 0 ˙
124 123 adantl φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s n = L if n = k A 0 ˙ = if L = k A 0 ˙
125 11 ad3antrrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s L 0
126 6 8 ring0cl R Ring 0 ˙ K
127 5 126 syl φ 0 ˙ K
128 127 ad3antrrr φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s 0 ˙ K
129 118 128 ifcld φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s if L = k A 0 ˙ K
130 121 124 125 129 fvmptd φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s coe 1 A ˙ k × ˙ X L = if L = k A 0 ˙
131 113 130 mpteq2da φ s 0 x 0 s < x x / k A = 0 ˙ k 0 s coe 1 A ˙ k × ˙ X L = k 0 s if L = k A 0 ˙
132 131 oveq2d φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s coe 1 A ˙ k × ˙ X L = R k = 0 s if L = k A 0 ˙
133 breq2 x = L s < x s < L
134 csbeq1 x = L x / k A = L / k A
135 134 eqeq1d x = L x / k A = 0 ˙ L / k A = 0 ˙
136 133 135 imbi12d x = L s < x x / k A = 0 ˙ s < L L / k A = 0 ˙
137 136 rspcva L 0 x 0 s < x x / k A = 0 ˙ s < L L / k A = 0 ˙
138 nfv k φ s 0 s < L
139 nfcsb1v _ k L / k A
140 139 nfeq1 k L / k A = 0 ˙
141 138 140 nfan k φ s 0 s < L L / k A = 0 ˙
142 elfz2nn0 k 0 s k 0 s 0 k s
143 nn0re k 0 k
144 143 ad2antrr k 0 s 0 L 0 k
145 nn0re s 0 s
146 145 adantl k 0 s 0 s
147 146 adantr k 0 s 0 L 0 s
148 nn0re L 0 L
149 148 adantl k 0 s 0 L 0 L
150 lelttr k s L k s s < L k < L
151 144 147 149 150 syl3anc k 0 s 0 L 0 k s s < L k < L
152 animorr k 0 s 0 L 0 k < L L < k k < L
153 df-ne L k ¬ L = k
154 143 adantr k 0 s 0 k
155 lttri2 L k L k L < k k < L
156 148 154 155 syl2anr k 0 s 0 L 0 L k L < k k < L
157 156 adantr k 0 s 0 L 0 k < L L k L < k k < L
158 153 157 bitr3id k 0 s 0 L 0 k < L ¬ L = k L < k k < L
159 152 158 mpbird k 0 s 0 L 0 k < L ¬ L = k
160 159 ex k 0 s 0 L 0 k < L ¬ L = k
161 151 160 syld k 0 s 0 L 0 k s s < L ¬ L = k
162 161 exp4b k 0 s 0 L 0 k s s < L ¬ L = k
163 162 expimpd k 0 s 0 L 0 k s s < L ¬ L = k
164 163 com23 k 0 k s s 0 L 0 s < L ¬ L = k
165 164 imp k 0 k s s 0 L 0 s < L ¬ L = k
166 165 3adant2 k 0 s 0 k s s 0 L 0 s < L ¬ L = k
167 142 166 sylbi k 0 s s 0 L 0 s < L ¬ L = k
168 167 expd k 0 s s 0 L 0 s < L ¬ L = k
169 11 168 syl7 k 0 s s 0 φ s < L ¬ L = k
170 169 com12 s 0 k 0 s φ s < L ¬ L = k
171 170 com24 s 0 s < L φ k 0 s ¬ L = k
172 171 imp s 0 s < L φ k 0 s ¬ L = k
173 172 impcom φ s 0 s < L k 0 s ¬ L = k
174 173 adantr φ s 0 s < L L / k A = 0 ˙ k 0 s ¬ L = k
175 174 imp φ s 0 s < L L / k A = 0 ˙ k 0 s ¬ L = k
176 175 iffalsed φ s 0 s < L L / k A = 0 ˙ k 0 s if L = k A 0 ˙ = 0 ˙
177 141 176 mpteq2da φ s 0 s < L L / k A = 0 ˙ k 0 s if L = k A 0 ˙ = k 0 s 0 ˙
178 177 oveq2d φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = R k = 0 s 0 ˙
179 ringmnd R Ring R Mnd
180 5 179 syl φ R Mnd
181 180 adantr φ s 0 s < L R Mnd
182 ovex 0 s V
183 8 gsumz R Mnd 0 s V R k = 0 s 0 ˙ = 0 ˙
184 181 182 183 sylancl φ s 0 s < L R k = 0 s 0 ˙ = 0 ˙
185 184 adantr φ s 0 s < L L / k A = 0 ˙ R k = 0 s 0 ˙ = 0 ˙
186 id L / k A = 0 ˙ L / k A = 0 ˙
187 186 eqcomd L / k A = 0 ˙ 0 ˙ = L / k A
188 187 adantl φ s 0 s < L L / k A = 0 ˙ 0 ˙ = L / k A
189 178 185 188 3eqtrd φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
190 189 ex φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
191 190 expr φ s 0 s < L L / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
192 191 a2d φ s 0 s < L L / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
193 192 ex φ s 0 s < L L / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
194 193 com13 s < L L / k A = 0 ˙ s 0 φ s < L R k = 0 s if L = k A 0 ˙ = L / k A
195 137 194 syl L 0 x 0 s < x x / k A = 0 ˙ s 0 φ s < L R k = 0 s if L = k A 0 ˙ = L / k A
196 195 ex L 0 x 0 s < x x / k A = 0 ˙ s 0 φ s < L R k = 0 s if L = k A 0 ˙ = L / k A
197 196 com24 L 0 φ s 0 x 0 s < x x / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
198 11 197 mpcom φ s 0 x 0 s < x x / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
199 198 imp31 φ s 0 x 0 s < x x / k A = 0 ˙ s < L R k = 0 s if L = k A 0 ˙ = L / k A
200 199 com12 s < L φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
201 pm3.2 φ s 0 ¬ s < L φ s 0 ¬ s < L
202 201 adantr φ s 0 x 0 s < x x / k A = 0 ˙ ¬ s < L φ s 0 ¬ s < L
203 180 ad2antrr φ s 0 ¬ s < L R Mnd
204 182 a1i φ s 0 ¬ s < L 0 s V
205 11 nn0red φ L
206 lenlt L s L s ¬ s < L
207 205 145 206 syl2an φ s 0 L s ¬ s < L
208 11 ad2antrr φ s 0 L s L 0
209 simplr φ s 0 L s s 0
210 simpr φ s 0 L s L s
211 elfz2nn0 L 0 s L 0 s 0 L s
212 208 209 210 211 syl3anbrc φ s 0 L s L 0 s
213 212 ex φ s 0 L s L 0 s
214 207 213 sylbird φ s 0 ¬ s < L L 0 s
215 214 imp φ s 0 ¬ s < L L 0 s
216 eqcom L = k k = L
217 ifbi L = k k = L if L = k A 0 ˙ = if k = L A 0 ˙
218 216 217 ax-mp if L = k A 0 ˙ = if k = L A 0 ˙
219 218 mpteq2i k 0 s if L = k A 0 ˙ = k 0 s if k = L A 0 ˙
220 12 6 eleqtrdi φ k 0 A Base R
221 220 ex φ k 0 A Base R
222 221 adantr φ s 0 k 0 A Base R
223 222 100 impel φ s 0 k 0 s A Base R
224 223 ralrimiva φ s 0 k 0 s A Base R
225 224 adantr φ s 0 ¬ s < L k 0 s A Base R
226 8 203 204 215 219 225 gsummpt1n0 φ s 0 ¬ s < L R k = 0 s if L = k A 0 ˙ = L / k A
227 202 226 syl6com ¬ s < L φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
228 200 227 pm2.61i φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s if L = k A 0 ˙ = L / k A
229 132 228 eqtrd φ s 0 x 0 s < x x / k A = 0 ˙ R k = 0 s coe 1 A ˙ k × ˙ X L = L / k A
230 97 109 229 3eqtrd φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
231 230 ex φ s 0 x 0 s < x x / k A = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
232 34 231 syld φ s 0 x 0 s < x k 0 A x = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
233 232 rexlimdva φ s 0 x 0 s < x k 0 A x = 0 ˙ coe 1 P k 0 A ˙ k × ˙ X L = L / k A
234 23 233 mpd φ coe 1 P k 0 A ˙ k × ˙ X L = L / k A