Metamath Proof Explorer


Theorem gsummoncoe1fzo

Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses gsummoncoe1fzo.p P = Poly 1 R
gsummoncoe1fzo.b B = Base P
gsummoncoe1fzo.x X = var 1 R
gsummoncoe1fzo.e × ˙ = mulGrp P
gsummoncoe1fzo.r φ R Ring
gsummoncoe1fzo.k K = Base R
gsummoncoe1fzo.m ˙ = P
gsummoncoe1fzo.1 0 ˙ = 0 R
gsummoncoe1fzo.a φ k 0 ..^ N A K
gsummoncoe1fzo.l φ L 0 ..^ N
gsummoncoe1fzo.n φ N 0
gsummoncoe1fzo.2 k = L A = C
Assertion gsummoncoe1fzo φ coe 1 P k 0 ..^ N A ˙ k × ˙ X L = C

Proof

Step Hyp Ref Expression
1 gsummoncoe1fzo.p P = Poly 1 R
2 gsummoncoe1fzo.b B = Base P
3 gsummoncoe1fzo.x X = var 1 R
4 gsummoncoe1fzo.e × ˙ = mulGrp P
5 gsummoncoe1fzo.r φ R Ring
6 gsummoncoe1fzo.k K = Base R
7 gsummoncoe1fzo.m ˙ = P
8 gsummoncoe1fzo.1 0 ˙ = 0 R
9 gsummoncoe1fzo.a φ k 0 ..^ N A K
10 gsummoncoe1fzo.l φ L 0 ..^ N
11 gsummoncoe1fzo.n φ N 0
12 gsummoncoe1fzo.2 k = L A = C
13 eqid 0 P = 0 P
14 1 ply1ring R Ring P Ring
15 5 14 syl φ P Ring
16 15 ringcmnd φ P CMnd
17 nn0ex 0 V
18 17 a1i φ 0 V
19 simpr φ k 0 0 ..^ N k 0 0 ..^ N
20 19 eldifbd φ k 0 0 ..^ N ¬ k 0 ..^ N
21 20 iffalsed φ k 0 0 ..^ N if k 0 ..^ N A 0 ˙ = 0 ˙
22 21 oveq1d φ k 0 0 ..^ N if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = 0 ˙ ˙ k × ˙ X
23 5 adantr φ k 0 0 ..^ N R Ring
24 19 eldifad φ k 0 0 ..^ N k 0
25 eqid mulGrp P = mulGrp P
26 25 2 mgpbas B = Base mulGrp P
27 25 ringmgp P Ring mulGrp P Mnd
28 15 27 syl φ mulGrp P Mnd
29 28 adantr φ k 0 mulGrp P Mnd
30 simpr φ k 0 k 0
31 3 1 2 vr1cl R Ring X B
32 5 31 syl φ X B
33 32 adantr φ k 0 X B
34 26 4 29 30 33 mulgnn0cld φ k 0 k × ˙ X B
35 24 34 syldan φ k 0 0 ..^ N k × ˙ X B
36 1 2 7 8 ply10s0 R Ring k × ˙ X B 0 ˙ ˙ k × ˙ X = 0 P
37 23 35 36 syl2anc φ k 0 0 ..^ N 0 ˙ ˙ k × ˙ X = 0 P
38 22 37 eqtrd φ k 0 0 ..^ N if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = 0 P
39 fzofi 0 ..^ N Fin
40 39 a1i φ 0 ..^ N Fin
41 1 ply1lmod R Ring P LMod
42 5 41 syl φ P LMod
43 42 adantr φ k 0 P LMod
44 9 r19.21bi φ k 0 ..^ N A K
45 44 adantlr φ k 0 k 0 ..^ N A K
46 6 8 ring0cl R Ring 0 ˙ K
47 5 46 syl φ 0 ˙ K
48 47 ad2antrr φ k 0 ¬ k 0 ..^ N 0 ˙ K
49 45 48 ifclda φ k 0 if k 0 ..^ N A 0 ˙ K
50 1 ply1sca R Ring R = Scalar P
51 5 50 syl φ R = Scalar P
52 51 fveq2d φ Base R = Base Scalar P
53 6 52 eqtrid φ K = Base Scalar P
54 53 adantr φ k 0 K = Base Scalar P
55 49 54 eleqtrd φ k 0 if k 0 ..^ N A 0 ˙ Base Scalar P
56 eqid Scalar P = Scalar P
57 eqid Base Scalar P = Base Scalar P
58 2 56 7 57 lmodvscl P LMod if k 0 ..^ N A 0 ˙ Base Scalar P k × ˙ X B if k 0 ..^ N A 0 ˙ ˙ k × ˙ X B
59 43 55 34 58 syl3anc φ k 0 if k 0 ..^ N A 0 ˙ ˙ k × ˙ X B
60 fzo0ssnn0 0 ..^ N 0
61 60 a1i φ 0 ..^ N 0
62 2 13 16 18 38 40 59 61 gsummptres2 φ P k 0 if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = P k 0 ..^ N if k 0 ..^ N A 0 ˙ ˙ k × ˙ X
63 simpr φ k 0 ..^ N k 0 ..^ N
64 63 iftrued φ k 0 ..^ N if k 0 ..^ N A 0 ˙ = A
65 64 oveq1d φ k 0 ..^ N if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = A ˙ k × ˙ X
66 65 mpteq2dva φ k 0 ..^ N if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = k 0 ..^ N A ˙ k × ˙ X
67 66 oveq2d φ P k 0 ..^ N if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = P k 0 ..^ N A ˙ k × ˙ X
68 62 67 eqtrd φ P k 0 if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = P k 0 ..^ N A ˙ k × ˙ X
69 68 fveq2d φ coe 1 P k 0 if k 0 ..^ N A 0 ˙ ˙ k × ˙ X = coe 1 P k 0 ..^ N A ˙ k × ˙ X
70 69 fveq1d φ coe 1 P k 0 if k 0 ..^ N A 0 ˙ ˙ k × ˙ X L = coe 1 P k 0 ..^ N A ˙ k × ˙ X L
71 49 ralrimiva φ k 0 if k 0 ..^ N A 0 ˙ K
72 eqid k 0 if k 0 ..^ N A 0 ˙ = k 0 if k 0 ..^ N A 0 ˙
73 72 18 40 44 47 mptiffisupp φ finSupp 0 ˙ k 0 if k 0 ..^ N A 0 ˙
74 60 10 sselid φ L 0
75 1 2 3 4 5 6 7 8 71 73 74 gsummoncoe1 φ coe 1 P k 0 if k 0 ..^ N A 0 ˙ ˙ k × ˙ X L = L / k if k 0 ..^ N A 0 ˙
76 70 75 eqtr3d φ coe 1 P k 0 ..^ N A ˙ k × ˙ X L = L / k if k 0 ..^ N A 0 ˙
77 eleq1 k = L k 0 ..^ N L 0 ..^ N
78 77 12 ifbieq1d k = L if k 0 ..^ N A 0 ˙ = if L 0 ..^ N C 0 ˙
79 78 adantl φ k = L if k 0 ..^ N A 0 ˙ = if L 0 ..^ N C 0 ˙
80 10 79 csbied φ L / k if k 0 ..^ N A 0 ˙ = if L 0 ..^ N C 0 ˙
81 10 iftrued φ if L 0 ..^ N C 0 ˙ = C
82 76 80 81 3eqtrd φ coe 1 P k 0 ..^ N A ˙ k × ˙ X L = C