Metamath Proof Explorer


Theorem gsummptcl

Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses gsummptcl.b B = Base G
gsummptcl.g φ G CMnd
gsummptcl.n φ N Fin
gsummptcl.e φ i N X B
Assertion gsummptcl φ G i N X B

Proof

Step Hyp Ref Expression
1 gsummptcl.b B = Base G
2 gsummptcl.g φ G CMnd
3 gsummptcl.n φ N Fin
4 gsummptcl.e φ i N X B
5 eqid 0 G = 0 G
6 eqid i N X = i N X
7 6 fmpt i N X B i N X : N B
8 4 7 sylib φ i N X : N B
9 6 fnmpt i N X B i N X Fn N
10 4 9 syl φ i N X Fn N
11 fvexd φ 0 G V
12 10 3 11 fndmfifsupp φ finSupp 0 G i N X
13 1 5 2 3 8 12 gsumcl φ G i N X B