| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptf1o.x |
|
| 2 |
|
gsummptf1o.b |
|
| 3 |
|
gsummptf1o.z |
|
| 4 |
|
gsummptf1o.i |
|
| 5 |
|
gsummptf1o.g |
|
| 6 |
|
gsummptf1o.a |
|
| 7 |
|
gsummptf1o.d |
|
| 8 |
|
gsummptf1o.f |
|
| 9 |
|
gsummptf1o.e |
|
| 10 |
|
gsummptf1o.h |
|
| 11 |
7
|
adantr |
|
| 12 |
11 8
|
sseldd |
|
| 13 |
12
|
fmpttd |
|
| 14 |
|
eqid |
|
| 15 |
3
|
fvexi |
|
| 16 |
15
|
a1i |
|
| 17 |
14 6 12 16
|
fsuppmptdm |
|
| 18 |
9
|
ralrimiva |
|
| 19 |
10
|
ralrimiva |
|
| 20 |
|
eqid |
|
| 21 |
20
|
f1ompt |
|
| 22 |
18 19 21
|
sylanbrc |
|
| 23 |
2 3 5 6 13 17 22
|
gsumf1o |
|
| 24 |
|
eqidd |
|
| 25 |
|
eqidd |
|
| 26 |
18 24 25
|
fmptcos |
|
| 27 |
|
nfv |
|
| 28 |
1
|
a1i |
|
| 29 |
4
|
adantl |
|
| 30 |
27 28 9 29
|
csbiedf |
|
| 31 |
30
|
mpteq2dva |
|
| 32 |
26 31
|
eqtrd |
|
| 33 |
32
|
oveq2d |
|
| 34 |
23 33
|
eqtrd |
|