Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptf1o.x |
|
2 |
|
gsummptf1o.b |
|
3 |
|
gsummptf1o.z |
|
4 |
|
gsummptf1o.i |
|
5 |
|
gsummptf1o.g |
|
6 |
|
gsummptf1o.a |
|
7 |
|
gsummptf1o.d |
|
8 |
|
gsummptf1o.f |
|
9 |
|
gsummptf1o.e |
|
10 |
|
gsummptf1o.h |
|
11 |
7
|
adantr |
|
12 |
11 8
|
sseldd |
|
13 |
12
|
fmpttd |
|
14 |
|
eqid |
|
15 |
3
|
fvexi |
|
16 |
15
|
a1i |
|
17 |
14 6 12 16
|
fsuppmptdm |
|
18 |
9
|
ralrimiva |
|
19 |
10
|
ralrimiva |
|
20 |
|
eqid |
|
21 |
20
|
f1ompt |
|
22 |
18 19 21
|
sylanbrc |
|
23 |
2 3 5 6 13 17 22
|
gsumf1o |
|
24 |
|
eqidd |
|
25 |
|
eqidd |
|
26 |
18 24 25
|
fmptcos |
|
27 |
|
nfv |
|
28 |
1
|
a1i |
|
29 |
4
|
adantl |
|
30 |
27 28 9 29
|
csbiedf |
|
31 |
30
|
mpteq2dva |
|
32 |
26 31
|
eqtrd |
|
33 |
32
|
oveq2d |
|
34 |
23 33
|
eqtrd |
|