Metamath Proof Explorer


Theorem gsummptfidmadd

Description: The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmadd.b B = Base G
gsummptfidmadd.p + ˙ = + G
gsummptfidmadd.g φ G CMnd
gsummptfidmadd.a φ A Fin
gsummptfidmadd.c φ x A C B
gsummptfidmadd.d φ x A D B
gsummptfidmadd.f F = x A C
gsummptfidmadd.h H = x A D
Assertion gsummptfidmadd φ G x A C + ˙ D = G F + ˙ G H

Proof

Step Hyp Ref Expression
1 gsummptfidmadd.b B = Base G
2 gsummptfidmadd.p + ˙ = + G
3 gsummptfidmadd.g φ G CMnd
4 gsummptfidmadd.a φ A Fin
5 gsummptfidmadd.c φ x A C B
6 gsummptfidmadd.d φ x A D B
7 gsummptfidmadd.f F = x A C
8 gsummptfidmadd.h H = x A D
9 eqid 0 G = 0 G
10 7 a1i φ F = x A C
11 8 a1i φ H = x A D
12 fvexd φ 0 G V
13 7 4 5 12 fsuppmptdm φ finSupp 0 G F
14 8 4 6 12 fsuppmptdm φ finSupp 0 G H
15 1 9 2 3 4 5 6 10 11 13 14 gsummptfsadd φ G x A C + ˙ D = G F + ˙ G H