Metamath Proof Explorer


Theorem gsummptfidmadd2

Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmadd.b B = Base G
gsummptfidmadd.p + ˙ = + G
gsummptfidmadd.g φ G CMnd
gsummptfidmadd.a φ A Fin
gsummptfidmadd.c φ x A C B
gsummptfidmadd.d φ x A D B
gsummptfidmadd.f F = x A C
gsummptfidmadd.h H = x A D
Assertion gsummptfidmadd2 φ G F + ˙ f H = G F + ˙ G H

Proof

Step Hyp Ref Expression
1 gsummptfidmadd.b B = Base G
2 gsummptfidmadd.p + ˙ = + G
3 gsummptfidmadd.g φ G CMnd
4 gsummptfidmadd.a φ A Fin
5 gsummptfidmadd.c φ x A C B
6 gsummptfidmadd.d φ x A D B
7 gsummptfidmadd.f F = x A C
8 gsummptfidmadd.h H = x A D
9 7 a1i φ F = x A C
10 8 a1i φ H = x A D
11 4 5 6 9 10 offval2 φ F + ˙ f H = x A C + ˙ D
12 11 oveq2d φ G F + ˙ f H = G x A C + ˙ D
13 1 2 3 4 5 6 7 8 gsummptfidmadd φ G x A C + ˙ D = G F + ˙ G H
14 12 13 eqtrd φ G F + ˙ f H = G F + ˙ G H