Metamath Proof Explorer


Theorem gsummptfidmsplitres

Description: Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmsplit.b B = Base G
gsummptfidmsplit.p + ˙ = + G
gsummptfidmsplit.g φ G CMnd
gsummptfidmsplit.a φ A Fin
gsummptfidmsplit.y φ k A Y B
gsummptfidmsplit.i φ C D =
gsummptfidmsplit.u φ A = C D
gsummptfidmsplitres.f F = k A Y
Assertion gsummptfidmsplitres φ G F = G F C + ˙ G F D

Proof

Step Hyp Ref Expression
1 gsummptfidmsplit.b B = Base G
2 gsummptfidmsplit.p + ˙ = + G
3 gsummptfidmsplit.g φ G CMnd
4 gsummptfidmsplit.a φ A Fin
5 gsummptfidmsplit.y φ k A Y B
6 gsummptfidmsplit.i φ C D =
7 gsummptfidmsplit.u φ A = C D
8 gsummptfidmsplitres.f F = k A Y
9 eqid 0 G = 0 G
10 5 8 fmptd φ F : A B
11 fvexd φ 0 G V
12 8 4 5 11 fsuppmptdm φ finSupp 0 G F
13 1 9 2 3 4 10 12 6 7 gsumsplit φ G F = G F C + ˙ G F D