Metamath Proof Explorer


Theorem gsummptfif1o

Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptcl.b B = Base G
gsummptcl.g φ G CMnd
gsummptcl.n φ N Fin
gsummptcl.e φ i N X B
gsummptfif1o.f F = i N X
gsummptfif1o.h φ H : C 1-1 onto N
Assertion gsummptfif1o φ G F = G F H

Proof

Step Hyp Ref Expression
1 gsummptcl.b B = Base G
2 gsummptcl.g φ G CMnd
3 gsummptcl.n φ N Fin
4 gsummptcl.e φ i N X B
5 gsummptfif1o.f F = i N X
6 gsummptfif1o.h φ H : C 1-1 onto N
7 eqid 0 G = 0 G
8 5 fmpt i N X B F : N B
9 4 8 sylib φ F : N B
10 fvexd φ 0 G V
11 9 3 10 fdmfifsupp φ finSupp 0 G F
12 1 7 2 3 9 11 6 gsumf1o φ G F = G F H