Metamath Proof Explorer


Theorem gsummptfsadd

Description: The sum of two group sums expressed as mappings. (Contributed by AV, 4-Apr-2019) (Revised by AV, 9-Jul-2019)

Ref Expression
Hypotheses gsummptfsadd.b B = Base G
gsummptfsadd.z 0 ˙ = 0 G
gsummptfsadd.p + ˙ = + G
gsummptfsadd.g φ G CMnd
gsummptfsadd.a φ A V
gsummptfsadd.c φ x A C B
gsummptfsadd.d φ x A D B
gsummptfsadd.f φ F = x A C
gsummptfsadd.h φ H = x A D
gsummptfsadd.w φ finSupp 0 ˙ F
gsummptfsadd.v φ finSupp 0 ˙ H
Assertion gsummptfsadd φ G x A C + ˙ D = G F + ˙ G H

Proof

Step Hyp Ref Expression
1 gsummptfsadd.b B = Base G
2 gsummptfsadd.z 0 ˙ = 0 G
3 gsummptfsadd.p + ˙ = + G
4 gsummptfsadd.g φ G CMnd
5 gsummptfsadd.a φ A V
6 gsummptfsadd.c φ x A C B
7 gsummptfsadd.d φ x A D B
8 gsummptfsadd.f φ F = x A C
9 gsummptfsadd.h φ H = x A D
10 gsummptfsadd.w φ finSupp 0 ˙ F
11 gsummptfsadd.v φ finSupp 0 ˙ H
12 5 6 7 8 9 offval2 φ F + ˙ f H = x A C + ˙ D
13 12 eqcomd φ x A C + ˙ D = F + ˙ f H
14 13 oveq2d φ G x A C + ˙ D = G F + ˙ f H
15 8 6 fmpt3d φ F : A B
16 9 7 fmpt3d φ H : A B
17 1 2 3 4 5 15 16 10 11 gsumadd φ G F + ˙ f H = G F + ˙ G H
18 14 17 eqtrd φ G x A C + ˙ D = G F + ˙ G H