Metamath Proof Explorer


Theorem gsummptfssub

Description: The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses gsummptfssub.b B = Base G
gsummptfssub.z 0 ˙ = 0 G
gsummptfssub.s - ˙ = - G
gsummptfssub.g φ G Abel
gsummptfssub.a φ A V
gsummptfssub.c φ x A C B
gsummptfssub.d φ x A D B
gsummptfssub.f φ F = x A C
gsummptfssub.h φ H = x A D
gsummptfssub.w φ finSupp 0 ˙ F
gsummptfssub.v φ finSupp 0 ˙ H
Assertion gsummptfssub φ G x A C - ˙ D = G F - ˙ G H

Proof

Step Hyp Ref Expression
1 gsummptfssub.b B = Base G
2 gsummptfssub.z 0 ˙ = 0 G
3 gsummptfssub.s - ˙ = - G
4 gsummptfssub.g φ G Abel
5 gsummptfssub.a φ A V
6 gsummptfssub.c φ x A C B
7 gsummptfssub.d φ x A D B
8 gsummptfssub.f φ F = x A C
9 gsummptfssub.h φ H = x A D
10 gsummptfssub.w φ finSupp 0 ˙ F
11 gsummptfssub.v φ finSupp 0 ˙ H
12 5 6 7 8 9 offval2 φ F - ˙ f H = x A C - ˙ D
13 12 eqcomd φ x A C - ˙ D = F - ˙ f H
14 13 oveq2d φ G x A C - ˙ D = G F - ˙ f H
15 8 6 fmpt3d φ F : A B
16 9 7 fmpt3d φ H : A B
17 1 2 3 4 5 15 16 10 11 gsumsub φ G F - ˙ f H = G F - ˙ G H
18 14 17 eqtrd φ G x A C - ˙ D = G F - ˙ G H