Metamath Proof Explorer


Theorem gsummptfzsplit

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019)

Ref Expression
Hypotheses gsummptfzsplit.b B = Base G
gsummptfzsplit.p + ˙ = + G
gsummptfzsplit.g φ G CMnd
gsummptfzsplit.n φ N 0
gsummptfzsplit.y φ k 0 N + 1 Y B
Assertion gsummptfzsplit φ G k = 0 N + 1 Y = G k = 0 N Y + ˙ G k N + 1 Y

Proof

Step Hyp Ref Expression
1 gsummptfzsplit.b B = Base G
2 gsummptfzsplit.p + ˙ = + G
3 gsummptfzsplit.g φ G CMnd
4 gsummptfzsplit.n φ N 0
5 gsummptfzsplit.y φ k 0 N + 1 Y B
6 fzfid φ 0 N + 1 Fin
7 fzp1disj 0 N N + 1 =
8 7 a1i φ 0 N N + 1 =
9 elnn0uz N 0 N 0
10 4 9 sylib φ N 0
11 fzsuc N 0 0 N + 1 = 0 N N + 1
12 10 11 syl φ 0 N + 1 = 0 N N + 1
13 1 2 3 6 5 8 12 gsummptfidmsplit φ G k = 0 N + 1 Y = G k = 0 N Y + ˙ G k N + 1 Y