Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019) (Proof shortened by AV, 11-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummpt1n0.0 | ||
gsummpt1n0.g | |||
gsummpt1n0.i | |||
gsummpt1n0.x | |||
gsummpt1n0.f | |||
gsummptif1n0.a | |||
Assertion | gsummptif1n0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummpt1n0.0 | ||
2 | gsummpt1n0.g | ||
3 | gsummpt1n0.i | ||
4 | gsummpt1n0.x | ||
5 | gsummpt1n0.f | ||
6 | gsummptif1n0.a | ||
7 | 6 | ralrimivw | |
8 | 1 2 3 4 5 7 | gsummpt1n0 | |
9 | csbconstg | ||
10 | 4 9 | syl | |
11 | 8 10 | eqtrd |