Metamath Proof Explorer


Theorem gsummptmhm

Description: Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018) (Revised by AV, 8-Sep-2019)

Ref Expression
Hypotheses gsummptmhm.b B = Base G
gsummptmhm.z 0 ˙ = 0 G
gsummptmhm.g φ G CMnd
gsummptmhm.h φ H Mnd
gsummptmhm.a φ A V
gsummptmhm.k φ K G MndHom H
gsummptmhm.c φ x A C B
gsummptmhm.w φ finSupp 0 ˙ x A C
Assertion gsummptmhm φ H x A K C = K G x A C

Proof

Step Hyp Ref Expression
1 gsummptmhm.b B = Base G
2 gsummptmhm.z 0 ˙ = 0 G
3 gsummptmhm.g φ G CMnd
4 gsummptmhm.h φ H Mnd
5 gsummptmhm.a φ A V
6 gsummptmhm.k φ K G MndHom H
7 gsummptmhm.c φ x A C B
8 gsummptmhm.w φ finSupp 0 ˙ x A C
9 eqidd φ x A C = x A C
10 eqid Base H = Base H
11 1 10 mhmf K G MndHom H K : B Base H
12 ffn K : B Base H K Fn B
13 6 11 12 3syl φ K Fn B
14 dffn5 K Fn B K = y B K y
15 13 14 sylib φ K = y B K y
16 fveq2 y = C K y = K C
17 7 9 15 16 fmptco φ K x A C = x A K C
18 17 oveq2d φ H K x A C = H x A K C
19 7 fmpttd φ x A C : A B
20 1 2 3 4 5 6 19 8 gsummhm φ H K x A C = K G x A C
21 18 20 eqtr3d φ H x A K C = K G x A C