Metamath Proof Explorer


Theorem gsummptshft

Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses gsummptshft.b B = Base G
gsummptshft.z 0 ˙ = 0 G
gsummptshft.g φ G CMnd
gsummptshft.k φ K
gsummptshft.m φ M
gsummptshft.n φ N
gsummptshft.a φ j M N A B
gsummptshft.c j = k K A = C
Assertion gsummptshft φ G j = M N A = G k = M + K N + K C

Proof

Step Hyp Ref Expression
1 gsummptshft.b B = Base G
2 gsummptshft.z 0 ˙ = 0 G
3 gsummptshft.g φ G CMnd
4 gsummptshft.k φ K
5 gsummptshft.m φ M
6 gsummptshft.n φ N
7 gsummptshft.a φ j M N A B
8 gsummptshft.c j = k K A = C
9 ovexd φ M N V
10 7 fmpttd φ j M N A : M N B
11 eqid j M N A = j M N A
12 fzfid φ M N Fin
13 2 fvexi 0 ˙ V
14 13 a1i φ 0 ˙ V
15 11 12 7 14 fsuppmptdm φ finSupp 0 ˙ j M N A
16 4 5 6 mptfzshft φ k M + K N + K k K : M + K N + K 1-1 onto M N
17 1 2 3 9 10 15 16 gsumf1o φ G j = M N A = G j M N A k M + K N + K k K
18 elfzelz k M + K N + K k
19 18 zcnd k M + K N + K k
20 4 zcnd φ K
21 npcan k K k - K + K = k
22 19 20 21 syl2anr φ k M + K N + K k - K + K = k
23 simpr φ k M + K N + K k M + K N + K
24 22 23 eqeltrd φ k M + K N + K k - K + K M + K N + K
25 5 6 jca φ M N
26 25 adantr φ k M + K N + K M N
27 18 adantl φ k M + K N + K k
28 4 adantr φ k M + K N + K K
29 27 28 zsubcld φ k M + K N + K k K
30 fzaddel M N k K K k K M N k - K + K M + K N + K
31 26 29 28 30 syl12anc φ k M + K N + K k K M N k - K + K M + K N + K
32 24 31 mpbird φ k M + K N + K k K M N
33 eqidd φ k M + K N + K k K = k M + K N + K k K
34 eqidd φ j M N A = j M N A
35 32 33 34 8 fmptco φ j M N A k M + K N + K k K = k M + K N + K C
36 35 oveq2d φ G j M N A k M + K N + K k K = G k = M + K N + K C
37 17 36 eqtrd φ G j = M N A = G k = M + K N + K C