Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptshft.b |
|
2 |
|
gsummptshft.z |
|
3 |
|
gsummptshft.g |
|
4 |
|
gsummptshft.k |
|
5 |
|
gsummptshft.m |
|
6 |
|
gsummptshft.n |
|
7 |
|
gsummptshft.a |
|
8 |
|
gsummptshft.c |
|
9 |
|
ovexd |
|
10 |
7
|
fmpttd |
|
11 |
|
eqid |
|
12 |
|
fzfid |
|
13 |
2
|
fvexi |
|
14 |
13
|
a1i |
|
15 |
11 12 7 14
|
fsuppmptdm |
|
16 |
4 5 6
|
mptfzshft |
|
17 |
1 2 3 9 10 15 16
|
gsumf1o |
|
18 |
|
elfzelz |
|
19 |
18
|
zcnd |
|
20 |
4
|
zcnd |
|
21 |
|
npcan |
|
22 |
19 20 21
|
syl2anr |
|
23 |
|
simpr |
|
24 |
22 23
|
eqeltrd |
|
25 |
5 6
|
jca |
|
26 |
25
|
adantr |
|
27 |
18
|
adantl |
|
28 |
4
|
adantr |
|
29 |
27 28
|
zsubcld |
|
30 |
|
fzaddel |
|
31 |
26 29 28 30
|
syl12anc |
|
32 |
24 31
|
mpbird |
|
33 |
|
eqidd |
|
34 |
|
eqidd |
|
35 |
32 33 34 8
|
fmptco |
|
36 |
35
|
oveq2d |
|
37 |
17 36
|
eqtrd |
|