Metamath Proof Explorer


Theorem gsummptun

Description: Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsummptun.b B = Base W
gsummptun.p + ˙ = + W
gsummptun.w φ W CMnd
gsummptun.a φ A C Fin
gsummptun.d φ A C =
gsummptun.1 φ x A C D B
Assertion gsummptun φ W x A C D = W x A D + ˙ W x C D

Proof

Step Hyp Ref Expression
1 gsummptun.b B = Base W
2 gsummptun.p + ˙ = + W
3 gsummptun.w φ W CMnd
4 gsummptun.a φ A C Fin
5 gsummptun.d φ A C =
6 gsummptun.1 φ x A C D B
7 eqidd φ A C = A C
8 1 2 3 4 6 5 7 gsummptfidmsplit φ W x A C D = W x A D + ˙ W x C D