Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsummptun
Metamath Proof Explorer
Description: Group sum of a disjoint union, whereas sums are expressed as mappings.
(Contributed by Thierry Arnoux , 28-Mar-2018) (Proof shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsummptun.b
⊢ B = Base W
gsummptun.p
⊢ + ˙ = + W
gsummptun.w
⊢ φ → W ∈ CMnd
gsummptun.a
⊢ φ → A ∪ C ∈ Fin
gsummptun.d
⊢ φ → A ∩ C = ∅
gsummptun.1
⊢ φ ∧ x ∈ A ∪ C → D ∈ B
Assertion
gsummptun
⊢ φ → ∑ W x ∈ A ∪ C D = ∑ W x ∈ A D + ˙ ∑ W x ∈ C D
Proof
Step
Hyp
Ref
Expression
1
gsummptun.b
⊢ B = Base W
2
gsummptun.p
⊢ + ˙ = + W
3
gsummptun.w
⊢ φ → W ∈ CMnd
4
gsummptun.a
⊢ φ → A ∪ C ∈ Fin
5
gsummptun.d
⊢ φ → A ∩ C = ∅
6
gsummptun.1
⊢ φ ∧ x ∈ A ∪ C → D ∈ B
7
eqidd
⊢ φ → A ∪ C = A ∪ C
8
1 2 3 4 6 5 7
gsummptfidmsplit
⊢ φ → ∑ W x ∈ A ∪ C D = ∑ W x ∈ A D + ˙ ∑ W x ∈ C D