Metamath Proof Explorer


Theorem gsummulc1

Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) Remove unused hypothesis. (Revised by SN, 7-Mar-2025)

Ref Expression
Hypotheses gsummulc1.b B = Base R
gsummulc1.z 0 ˙ = 0 R
gsummulc1.t · ˙ = R
gsummulc1.r φ R Ring
gsummulc1.a φ A V
gsummulc1.y φ Y B
gsummulc1.x φ k A X B
gsummulc1.n φ finSupp 0 ˙ k A X
Assertion gsummulc1 φ R k A X · ˙ Y = R k A X · ˙ Y

Proof

Step Hyp Ref Expression
1 gsummulc1.b B = Base R
2 gsummulc1.z 0 ˙ = 0 R
3 gsummulc1.t · ˙ = R
4 gsummulc1.r φ R Ring
5 gsummulc1.a φ A V
6 gsummulc1.y φ Y B
7 gsummulc1.x φ k A X B
8 gsummulc1.n φ finSupp 0 ˙ k A X
9 4 ringcmnd φ R CMnd
10 ringmnd R Ring R Mnd
11 4 10 syl φ R Mnd
12 1 3 ringrghm R Ring Y B x B x · ˙ Y R GrpHom R
13 4 6 12 syl2anc φ x B x · ˙ Y R GrpHom R
14 ghmmhm x B x · ˙ Y R GrpHom R x B x · ˙ Y R MndHom R
15 13 14 syl φ x B x · ˙ Y R MndHom R
16 oveq1 x = X x · ˙ Y = X · ˙ Y
17 oveq1 x = R k A X x · ˙ Y = R k A X · ˙ Y
18 1 2 9 11 5 15 7 8 16 17 gsummhm2 φ R k A X · ˙ Y = R k A X · ˙ Y