Metamath Proof Explorer


Theorem gsummulg

Description: Nonnegative multiple of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsummulg.b B = Base G
gsummulg.z 0 ˙ = 0 G
gsummulg.t · ˙ = G
gsummulg.a φ A V
gsummulg.f φ k A X B
gsummulg.w φ finSupp 0 ˙ k A X
gsummulg.g φ G CMnd
gsummulg.n φ N 0
Assertion gsummulg φ G k A N · ˙ X = N · ˙ G k A X

Proof

Step Hyp Ref Expression
1 gsummulg.b B = Base G
2 gsummulg.z 0 ˙ = 0 G
3 gsummulg.t · ˙ = G
4 gsummulg.a φ A V
5 gsummulg.f φ k A X B
6 gsummulg.w φ finSupp 0 ˙ k A X
7 gsummulg.g φ G CMnd
8 gsummulg.n φ N 0
9 8 nn0zd φ N
10 8 olcd φ G Abel N 0
11 1 2 3 4 5 6 7 9 10 gsummulglem φ G k A N · ˙ X = N · ˙ G k A X