Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsummulg
Metamath Proof Explorer
Description: Nonnegative multiple of a group sum. (Contributed by Mario Carneiro , 15-Dec-2014) (Revised by Mario Carneiro , 7-Jan-2015) (Revised by AV , 6-Jun-2019)
Ref
Expression
Hypotheses
gsummulg.b
⊢ B = Base G
gsummulg.z
⊢ 0 ˙ = 0 G
gsummulg.t
⊢ · ˙ = ⋅ G
gsummulg.a
⊢ φ → A ∈ V
gsummulg.f
⊢ φ ∧ k ∈ A → X ∈ B
gsummulg.w
⊢ φ → finSupp 0 ˙ ⁡ k ∈ A ⟼ X
gsummulg.g
⊢ φ → G ∈ CMnd
gsummulg.n
⊢ φ → N ∈ ℕ 0
Assertion
gsummulg
⊢ φ → ∑ G k ∈ A N · ˙ X = N · ˙ ∑ G k ∈ A X
Proof
Step
Hyp
Ref
Expression
1
gsummulg.b
⊢ B = Base G
2
gsummulg.z
⊢ 0 ˙ = 0 G
3
gsummulg.t
⊢ · ˙ = ⋅ G
4
gsummulg.a
⊢ φ → A ∈ V
5
gsummulg.f
⊢ φ ∧ k ∈ A → X ∈ B
6
gsummulg.w
⊢ φ → finSupp 0 ˙ ⁡ k ∈ A ⟼ X
7
gsummulg.g
⊢ φ → G ∈ CMnd
8
gsummulg.n
⊢ φ → N ∈ ℕ 0
9
8
nn0zd
⊢ φ → N ∈ ℤ
10
8
olcd
⊢ φ → G ∈ Abel ∨ N ∈ ℕ 0
11
1 2 3 4 5 6 7 9 10
gsummulglem
⊢ φ → ∑ G k ∈ A N · ˙ X = N · ˙ ∑ G k ∈ A X