Metamath Proof Explorer


Theorem gsummulgz

Description: Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsummulg.b B = Base G
gsummulg.z 0 ˙ = 0 G
gsummulg.t · ˙ = G
gsummulg.a φ A V
gsummulg.f φ k A X B
gsummulg.w φ finSupp 0 ˙ k A X
gsummulgz.g φ G Abel
gsummulgz.n φ N
Assertion gsummulgz φ G k A N · ˙ X = N · ˙ G k A X

Proof

Step Hyp Ref Expression
1 gsummulg.b B = Base G
2 gsummulg.z 0 ˙ = 0 G
3 gsummulg.t · ˙ = G
4 gsummulg.a φ A V
5 gsummulg.f φ k A X B
6 gsummulg.w φ finSupp 0 ˙ k A X
7 gsummulgz.g φ G Abel
8 gsummulgz.n φ N
9 ablcmn G Abel G CMnd
10 7 9 syl φ G CMnd
11 7 orcd φ G Abel N 0
12 1 2 3 4 5 6 10 8 11 gsummulglem φ G k A N · ˙ X = N · ˙ G k A X