Step |
Hyp |
Ref |
Expression |
1 |
|
gsumncl.k |
|
2 |
|
gsumncl.w |
|
3 |
|
gsumncl.p |
|
4 |
|
gsumncl.b |
|
5 |
|
gsumnunsn.a |
|
6 |
|
gsumnunsn.l |
|
7 |
|
gsumnunsn.c |
|
8 |
|
seqp1 |
|
9 |
3 8
|
syl |
|
10 |
|
peano2uz |
|
11 |
3 10
|
syl |
|
12 |
4
|
adantlr |
|
13 |
7
|
adantlr |
|
14 |
6
|
ad2antrr |
|
15 |
13 14
|
eqeltrd |
|
16 |
|
elfzp1 |
|
17 |
3 16
|
syl |
|
18 |
17
|
biimpa |
|
19 |
12 15 18
|
mpjaodan |
|
20 |
19
|
fmpttd |
|
21 |
1 5 2 11 20
|
gsumval2 |
|
22 |
4
|
fmpttd |
|
23 |
1 5 2 3 22
|
gsumval2 |
|
24 |
|
fvres |
|
25 |
24
|
adantl |
|
26 |
|
fzssp1 |
|
27 |
|
resmpt |
|
28 |
26 27
|
ax-mp |
|
29 |
28
|
fveq1i |
|
30 |
25 29
|
eqtr3di |
|
31 |
3 30
|
seqfveq |
|
32 |
23 31
|
eqtr4d |
|
33 |
|
eqidd |
|
34 |
|
eluzfz2 |
|
35 |
11 34
|
syl |
|
36 |
33 7 35 6
|
fvmptd |
|
37 |
36
|
eqcomd |
|
38 |
32 37
|
oveq12d |
|
39 |
9 21 38
|
3eqtr4d |
|