Metamath Proof Explorer


Theorem gsumnunsn

Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses gsumncl.k K = Base M
gsumncl.w φ M Mnd
gsumncl.p φ P N
gsumncl.b φ k N P B K
gsumnunsn.a + ˙ = + M
gsumnunsn.l φ C K
gsumnunsn.c φ k = P + 1 B = C
Assertion gsumnunsn φ M k = N P + 1 B = M k = N P B + ˙ C

Proof

Step Hyp Ref Expression
1 gsumncl.k K = Base M
2 gsumncl.w φ M Mnd
3 gsumncl.p φ P N
4 gsumncl.b φ k N P B K
5 gsumnunsn.a + ˙ = + M
6 gsumnunsn.l φ C K
7 gsumnunsn.c φ k = P + 1 B = C
8 seqp1 P N seq N + ˙ k N P + 1 B P + 1 = seq N + ˙ k N P + 1 B P + ˙ k N P + 1 B P + 1
9 3 8 syl φ seq N + ˙ k N P + 1 B P + 1 = seq N + ˙ k N P + 1 B P + ˙ k N P + 1 B P + 1
10 peano2uz P N P + 1 N
11 3 10 syl φ P + 1 N
12 4 adantlr φ k N P + 1 k N P B K
13 7 adantlr φ k N P + 1 k = P + 1 B = C
14 6 ad2antrr φ k N P + 1 k = P + 1 C K
15 13 14 eqeltrd φ k N P + 1 k = P + 1 B K
16 elfzp1 P N k N P + 1 k N P k = P + 1
17 3 16 syl φ k N P + 1 k N P k = P + 1
18 17 biimpa φ k N P + 1 k N P k = P + 1
19 12 15 18 mpjaodan φ k N P + 1 B K
20 19 fmpttd φ k N P + 1 B : N P + 1 K
21 1 5 2 11 20 gsumval2 φ M k = N P + 1 B = seq N + ˙ k N P + 1 B P + 1
22 4 fmpttd φ k N P B : N P K
23 1 5 2 3 22 gsumval2 φ M k = N P B = seq N + ˙ k N P B P
24 fzssp1 N P N P + 1
25 resmpt N P N P + 1 k N P + 1 B N P = k N P B
26 24 25 ax-mp k N P + 1 B N P = k N P B
27 26 fveq1i k N P + 1 B N P i = k N P B i
28 fvres i N P k N P + 1 B N P i = k N P + 1 B i
29 28 adantl φ i N P k N P + 1 B N P i = k N P + 1 B i
30 27 29 syl5reqr φ i N P k N P + 1 B i = k N P B i
31 3 30 seqfveq φ seq N + ˙ k N P + 1 B P = seq N + ˙ k N P B P
32 23 31 eqtr4d φ M k = N P B = seq N + ˙ k N P + 1 B P
33 eqidd φ k N P + 1 B = k N P + 1 B
34 eluzfz2 P + 1 N P + 1 N P + 1
35 11 34 syl φ P + 1 N P + 1
36 33 7 35 6 fvmptd φ k N P + 1 B P + 1 = C
37 36 eqcomd φ C = k N P + 1 B P + 1
38 32 37 oveq12d φ M k = N P B + ˙ C = seq N + ˙ k N P + 1 B P + ˙ k N P + 1 B P + 1
39 9 21 38 3eqtr4d φ M k = N P + 1 B = M k = N P B + ˙ C