Step |
Hyp |
Ref |
Expression |
1 |
|
gsumply1eq.p |
|
2 |
|
gsumply1eq.x |
|
3 |
|
gsumply1eq.e |
|
4 |
|
gsumply1eq.r |
|
5 |
|
gsumply1eq.k |
|
6 |
|
gsumply1eq.m |
|
7 |
|
gsumply1eq.0 |
|
8 |
|
gsumply1eq.a |
|
9 |
|
gsumply1eq.f1 |
|
10 |
|
gsumply1eq.b |
|
11 |
|
gsumply1eq.f2 |
|
12 |
|
gsumply1eq.o |
|
13 |
|
gsumply1eq.q |
|
14 |
|
eqid |
|
15 |
1 14 2 3 4 5 6 7 8 9
|
gsumsmonply1 |
|
16 |
12 15
|
eqeltrd |
|
17 |
1 14 2 3 4 5 6 7 10 11
|
gsumsmonply1 |
|
18 |
13 17
|
eqeltrd |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
1 14 19 20
|
ply1coe1eq |
|
22 |
21
|
bicomd |
|
23 |
4 16 18 22
|
syl3anc |
|
24 |
12
|
adantr |
|
25 |
|
nfcv |
|
26 |
|
nfcsb1v |
|
27 |
|
nfcv |
|
28 |
|
nfcv |
|
29 |
26 27 28
|
nfov |
|
30 |
|
csbeq1a |
|
31 |
|
oveq1 |
|
32 |
30 31
|
oveq12d |
|
33 |
25 29 32
|
cbvmpt |
|
34 |
33
|
oveq2i |
|
35 |
24 34
|
eqtrdi |
|
36 |
35
|
fveq2d |
|
37 |
36
|
fveq1d |
|
38 |
4
|
adantr |
|
39 |
|
nfv |
|
40 |
26
|
nfel1 |
|
41 |
30
|
eleq1d |
|
42 |
39 40 41
|
cbvralw |
|
43 |
8 42
|
sylib |
|
44 |
43
|
adantr |
|
45 |
|
nfcv |
|
46 |
45 26 30
|
cbvmpt |
|
47 |
46 9
|
eqbrtrrid |
|
48 |
47
|
adantr |
|
49 |
|
simpr |
|
50 |
1 14 2 3 38 5 6 7 44 48 49
|
gsummoncoe1 |
|
51 |
|
csbcow |
|
52 |
|
csbid |
|
53 |
51 52
|
eqtri |
|
54 |
50 53
|
eqtrdi |
|
55 |
37 54
|
eqtrd |
|
56 |
13
|
adantr |
|
57 |
|
nfcv |
|
58 |
|
nfcsb1v |
|
59 |
58 27 28
|
nfov |
|
60 |
|
csbeq1a |
|
61 |
60 31
|
oveq12d |
|
62 |
57 59 61
|
cbvmpt |
|
63 |
62
|
a1i |
|
64 |
63
|
oveq2d |
|
65 |
56 64
|
eqtrd |
|
66 |
65
|
fveq2d |
|
67 |
66
|
fveq1d |
|
68 |
|
nfv |
|
69 |
58
|
nfel1 |
|
70 |
60
|
eleq1d |
|
71 |
68 69 70
|
cbvralw |
|
72 |
10 71
|
sylib |
|
73 |
72
|
adantr |
|
74 |
|
nfcv |
|
75 |
74 58 60
|
cbvmpt |
|
76 |
75 11
|
eqbrtrrid |
|
77 |
76
|
adantr |
|
78 |
1 14 2 3 38 5 6 7 73 77 49
|
gsummoncoe1 |
|
79 |
|
csbcow |
|
80 |
|
csbid |
|
81 |
79 80
|
eqtri |
|
82 |
78 81
|
eqtrdi |
|
83 |
67 82
|
eqtrd |
|
84 |
55 83
|
eqeq12d |
|
85 |
84
|
ralbidva |
|
86 |
23 85
|
bitrd |
|