Metamath Proof Explorer


Theorem gsumpr

Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018) (Proof shortened by AV, 28-Jul-2019)

Ref Expression
Hypotheses gsumpr.b B = Base G
gsumpr.p + ˙ = + G
gsumpr.s k = M A = C
gsumpr.t k = N A = D
Assertion gsumpr G CMnd M V N W M N C B D B G k M N A = C + ˙ D

Proof

Step Hyp Ref Expression
1 gsumpr.b B = Base G
2 gsumpr.p + ˙ = + G
3 gsumpr.s k = M A = C
4 gsumpr.t k = N A = D
5 simp1 G CMnd M V N W M N C B D B G CMnd
6 prfi M N Fin
7 6 a1i G CMnd M V N W M N C B D B M N Fin
8 vex k V
9 8 elpr k M N k = M k = N
10 eleq1a C B A = C A B
11 10 adantr C B D B A = C A B
12 11 3ad2ant3 G CMnd M V N W M N C B D B A = C A B
13 3 12 syl5com k = M G CMnd M V N W M N C B D B A B
14 eleq1a D B A = D A B
15 14 adantl C B D B A = D A B
16 15 3ad2ant3 G CMnd M V N W M N C B D B A = D A B
17 4 16 syl5com k = N G CMnd M V N W M N C B D B A B
18 13 17 jaoi k = M k = N G CMnd M V N W M N C B D B A B
19 9 18 sylbi k M N G CMnd M V N W M N C B D B A B
20 19 impcom G CMnd M V N W M N C B D B k M N A B
21 disjsn2 M N M N =
22 21 3ad2ant3 M V N W M N M N =
23 22 3ad2ant2 G CMnd M V N W M N C B D B M N =
24 df-pr M N = M N
25 24 a1i G CMnd M V N W M N C B D B M N = M N
26 eqid k M N A = k M N A
27 1 2 5 7 20 23 25 26 gsummptfidmsplitres G CMnd M V N W M N C B D B G k M N A = G k M N A M + ˙ G k M N A N
28 snsspr1 M M N
29 resmpt M M N k M N A M = k M A
30 28 29 mp1i G CMnd M V N W M N C B D B k M N A M = k M A
31 30 oveq2d G CMnd M V N W M N C B D B G k M N A M = G k M A
32 cmnmnd G CMnd G Mnd
33 simp1 M V N W M N M V
34 simpl C B D B C B
35 1 3 gsumsn G Mnd M V C B G k M A = C
36 32 33 34 35 syl3an G CMnd M V N W M N C B D B G k M A = C
37 31 36 eqtrd G CMnd M V N W M N C B D B G k M N A M = C
38 snsspr2 N M N
39 resmpt N M N k M N A N = k N A
40 38 39 mp1i G CMnd M V N W M N C B D B k M N A N = k N A
41 40 oveq2d G CMnd M V N W M N C B D B G k M N A N = G k N A
42 simp2 M V N W M N N W
43 simpr C B D B D B
44 1 4 gsumsn G Mnd N W D B G k N A = D
45 32 42 43 44 syl3an G CMnd M V N W M N C B D B G k N A = D
46 41 45 eqtrd G CMnd M V N W M N C B D B G k M N A N = D
47 37 46 oveq12d G CMnd M V N W M N C B D B G k M N A M + ˙ G k M N A N = C + ˙ D
48 27 47 eqtrd G CMnd M V N W M N C B D B G k M N A = C + ˙ D