Metamath Proof Explorer


Theorem gsumpr12val

Description: Value of the group sum operation over the pair { 1 , 2 } . (Contributed by AV, 14-Dec-2018)

Ref Expression
Hypotheses gsumpr12val.b B = Base G
gsumpr12val.p + ˙ = + G
gsumpr12val.g φ G V
gsumpr12val.f φ F : 1 2 B
Assertion gsumpr12val φ G F = F 1 + ˙ F 2

Proof

Step Hyp Ref Expression
1 gsumpr12val.b B = Base G
2 gsumpr12val.p + ˙ = + G
3 gsumpr12val.g φ G V
4 gsumpr12val.f φ F : 1 2 B
5 1zzd φ 1
6 df-2 2 = 1 + 1
7 6 a1i φ 2 = 1 + 1
8 1 2 3 5 7 4 gsumprval φ G F = F 1 + ˙ F 2