Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpropd.f |
|
2 |
|
gsumpropd.g |
|
3 |
|
gsumpropd.h |
|
4 |
|
gsumpropd.b |
|
5 |
|
gsumpropd.p |
|
6 |
5
|
oveqd |
|
7 |
6
|
eqeq1d |
|
8 |
5
|
oveqd |
|
9 |
8
|
eqeq1d |
|
10 |
7 9
|
anbi12d |
|
11 |
4 10
|
raleqbidv |
|
12 |
4 11
|
rabeqbidv |
|
13 |
12
|
sseq2d |
|
14 |
|
eqidd |
|
15 |
5
|
oveqdr |
|
16 |
14 4 15
|
grpidpropd |
|
17 |
5
|
seqeq2d |
|
18 |
17
|
fveq1d |
|
19 |
18
|
eqeq2d |
|
20 |
19
|
anbi2d |
|
21 |
20
|
rexbidv |
|
22 |
21
|
exbidv |
|
23 |
22
|
iotabidv |
|
24 |
12
|
difeq2d |
|
25 |
24
|
imaeq2d |
|
26 |
25
|
fveq2d |
|
27 |
26
|
oveq2d |
|
28 |
27
|
f1oeq2d |
|
29 |
25
|
f1oeq3d |
|
30 |
28 29
|
bitrd |
|
31 |
5
|
seqeq2d |
|
32 |
31 26
|
fveq12d |
|
33 |
32
|
eqeq2d |
|
34 |
30 33
|
anbi12d |
|
35 |
34
|
exbidv |
|
36 |
35
|
iotabidv |
|
37 |
23 36
|
ifeq12d |
|
38 |
13 16 37
|
ifbieq12d |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqidd |
|
44 |
|
eqidd |
|
45 |
39 40 41 42 43 2 1 44
|
gsumvalx |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
|
eqidd |
|
51 |
46 47 48 49 50 3 1 44
|
gsumvalx |
|
52 |
38 45 51
|
3eqtr4d |
|