| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumpropd.f |  | 
						
							| 2 |  | gsumpropd.g |  | 
						
							| 3 |  | gsumpropd.h |  | 
						
							| 4 |  | gsumpropd.b |  | 
						
							| 5 |  | gsumpropd.p |  | 
						
							| 6 | 5 | oveqd |  | 
						
							| 7 | 6 | eqeq1d |  | 
						
							| 8 | 5 | oveqd |  | 
						
							| 9 | 8 | eqeq1d |  | 
						
							| 10 | 7 9 | anbi12d |  | 
						
							| 11 | 4 10 | raleqbidv |  | 
						
							| 12 | 4 11 | rabeqbidv |  | 
						
							| 13 | 12 | sseq2d |  | 
						
							| 14 |  | eqidd |  | 
						
							| 15 | 5 | oveqdr |  | 
						
							| 16 | 14 4 15 | grpidpropd |  | 
						
							| 17 | 5 | seqeq2d |  | 
						
							| 18 | 17 | fveq1d |  | 
						
							| 19 | 18 | eqeq2d |  | 
						
							| 20 | 19 | anbi2d |  | 
						
							| 21 | 20 | rexbidv |  | 
						
							| 22 | 21 | exbidv |  | 
						
							| 23 | 22 | iotabidv |  | 
						
							| 24 | 12 | difeq2d |  | 
						
							| 25 | 24 | imaeq2d |  | 
						
							| 26 | 25 | fveq2d |  | 
						
							| 27 | 26 | oveq2d |  | 
						
							| 28 | 27 | f1oeq2d |  | 
						
							| 29 | 25 | f1oeq3d |  | 
						
							| 30 | 28 29 | bitrd |  | 
						
							| 31 | 5 | seqeq2d |  | 
						
							| 32 | 31 26 | fveq12d |  | 
						
							| 33 | 32 | eqeq2d |  | 
						
							| 34 | 30 33 | anbi12d |  | 
						
							| 35 | 34 | exbidv |  | 
						
							| 36 | 35 | iotabidv |  | 
						
							| 37 | 23 36 | ifeq12d |  | 
						
							| 38 | 13 16 37 | ifbieq12d |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 |  | eqidd |  | 
						
							| 44 |  | eqidd |  | 
						
							| 45 | 39 40 41 42 43 2 1 44 | gsumvalx |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 |  | eqidd |  | 
						
							| 51 | 46 47 48 49 50 3 1 44 | gsumvalx |  | 
						
							| 52 | 38 45 51 | 3eqtr4d |  |