Metamath Proof Explorer


Theorem gsumpropd

Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Stefan O'Rear, 1-Feb-2015) (Proof shortened by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses gsumpropd.f φ F V
gsumpropd.g φ G W
gsumpropd.h φ H X
gsumpropd.b φ Base G = Base H
gsumpropd.p φ + G = + H
Assertion gsumpropd φ G F = H F

Proof

Step Hyp Ref Expression
1 gsumpropd.f φ F V
2 gsumpropd.g φ G W
3 gsumpropd.h φ H X
4 gsumpropd.b φ Base G = Base H
5 gsumpropd.p φ + G = + H
6 5 oveqd φ s + G t = s + H t
7 6 eqeq1d φ s + G t = t s + H t = t
8 5 oveqd φ t + G s = t + H s
9 8 eqeq1d φ t + G s = t t + H s = t
10 7 9 anbi12d φ s + G t = t t + G s = t s + H t = t t + H s = t
11 4 10 raleqbidv φ t Base G s + G t = t t + G s = t t Base H s + H t = t t + H s = t
12 4 11 rabeqbidv φ s Base G | t Base G s + G t = t t + G s = t = s Base H | t Base H s + H t = t t + H s = t
13 12 sseq2d φ ran F s Base G | t Base G s + G t = t t + G s = t ran F s Base H | t Base H s + H t = t t + H s = t
14 eqidd φ Base G = Base G
15 5 oveqdr φ a Base G b Base G a + G b = a + H b
16 14 4 15 grpidpropd φ 0 G = 0 H
17 5 seqeq2d φ seq m + G F = seq m + H F
18 17 fveq1d φ seq m + G F n = seq m + H F n
19 18 eqeq2d φ x = seq m + G F n x = seq m + H F n
20 19 anbi2d φ dom F = m n x = seq m + G F n dom F = m n x = seq m + H F n
21 20 rexbidv φ n m dom F = m n x = seq m + G F n n m dom F = m n x = seq m + H F n
22 21 exbidv φ m n m dom F = m n x = seq m + G F n m n m dom F = m n x = seq m + H F n
23 22 iotabidv φ ι x | m n m dom F = m n x = seq m + G F n = ι x | m n m dom F = m n x = seq m + H F n
24 12 difeq2d φ V s Base G | t Base G s + G t = t t + G s = t = V s Base H | t Base H s + H t = t t + H s = t
25 24 imaeq2d φ F -1 V s Base G | t Base G s + G t = t t + G s = t = F -1 V s Base H | t Base H s + H t = t t + H s = t
26 25 fveq2d φ F -1 V s Base G | t Base G s + G t = t t + G s = t = F -1 V s Base H | t Base H s + H t = t t + H s = t
27 26 oveq2d φ 1 F -1 V s Base G | t Base G s + G t = t t + G s = t = 1 F -1 V s Base H | t Base H s + H t = t t + H s = t
28 27 f1oeq2d φ f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t
29 25 f1oeq3d φ f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t
30 28 29 bitrd φ f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t
31 5 seqeq2d φ seq 1 + G F f = seq 1 + H F f
32 31 26 fveq12d φ seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
33 32 eqeq2d φ x = seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t x = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
34 30 33 anbi12d φ f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t x = seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t x = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
35 34 exbidv φ f f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t x = seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t f f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t x = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
36 35 iotabidv φ ι x | f f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t x = seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t = ι x | f f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t x = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
37 23 36 ifeq12d φ if dom F ran ι x | m n m dom F = m n x = seq m + G F n ι x | f f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t x = seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t = if dom F ran ι x | m n m dom F = m n x = seq m + H F n ι x | f f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t x = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
38 13 16 37 ifbieq12d φ if ran F s Base G | t Base G s + G t = t t + G s = t 0 G if dom F ran ι x | m n m dom F = m n x = seq m + G F n ι x | f f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t x = seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t = if ran F s Base H | t Base H s + H t = t t + H s = t 0 H if dom F ran ι x | m n m dom F = m n x = seq m + H F n ι x | f f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t x = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
39 eqid Base G = Base G
40 eqid 0 G = 0 G
41 eqid + G = + G
42 eqid s Base G | t Base G s + G t = t t + G s = t = s Base G | t Base G s + G t = t t + G s = t
43 eqidd φ F -1 V s Base G | t Base G s + G t = t t + G s = t = F -1 V s Base G | t Base G s + G t = t t + G s = t
44 eqidd φ dom F = dom F
45 39 40 41 42 43 2 1 44 gsumvalx φ G F = if ran F s Base G | t Base G s + G t = t t + G s = t 0 G if dom F ran ι x | m n m dom F = m n x = seq m + G F n ι x | f f : 1 F -1 V s Base G | t Base G s + G t = t t + G s = t 1-1 onto F -1 V s Base G | t Base G s + G t = t t + G s = t x = seq 1 + G F f F -1 V s Base G | t Base G s + G t = t t + G s = t
46 eqid Base H = Base H
47 eqid 0 H = 0 H
48 eqid + H = + H
49 eqid s Base H | t Base H s + H t = t t + H s = t = s Base H | t Base H s + H t = t t + H s = t
50 eqidd φ F -1 V s Base H | t Base H s + H t = t t + H s = t = F -1 V s Base H | t Base H s + H t = t t + H s = t
51 46 47 48 49 50 3 1 44 gsumvalx φ H F = if ran F s Base H | t Base H s + H t = t t + H s = t 0 H if dom F ran ι x | m n m dom F = m n x = seq m + H F n ι x | f f : 1 F -1 V s Base H | t Base H s + H t = t t + H s = t 1-1 onto F -1 V s Base H | t Base H s + H t = t t + H s = t x = seq 1 + H F f F -1 V s Base H | t Base H s + H t = t t + H s = t
52 38 45 51 3eqtr4d φ G F = H F