Metamath Proof Explorer


Theorem gsumpropd2

Description: A stronger version of gsumpropd , working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd . (Contributed by Thierry Arnoux, 28-Jun-2017)

Ref Expression
Hypotheses gsumpropd2.f φ F V
gsumpropd2.g φ G W
gsumpropd2.h φ H X
gsumpropd2.b φ Base G = Base H
gsumpropd2.c φ s Base G t Base G s + G t Base G
gsumpropd2.e φ s Base G t Base G s + G t = s + H t
gsumpropd2.n φ Fun F
gsumpropd2.r φ ran F Base G
Assertion gsumpropd2 φ G F = H F

Proof

Step Hyp Ref Expression
1 gsumpropd2.f φ F V
2 gsumpropd2.g φ G W
3 gsumpropd2.h φ H X
4 gsumpropd2.b φ Base G = Base H
5 gsumpropd2.c φ s Base G t Base G s + G t Base G
6 gsumpropd2.e φ s Base G t Base G s + G t = s + H t
7 gsumpropd2.n φ Fun F
8 gsumpropd2.r φ ran F Base G
9 eqid F -1 V s Base G | t Base G s + G t = t t + G s = t = F -1 V s Base G | t Base G s + G t = t t + G s = t
10 eqid F -1 V s Base H | t Base H s + H t = t t + H s = t = F -1 V s Base H | t Base H s + H t = t t + H s = t
11 1 2 3 4 5 6 7 8 9 10 gsumpropd2lem φ G F = H F