Metamath Proof Explorer


Theorem gsumpropd2lem

Description: Lemma for gsumpropd2 . (Contributed by Thierry Arnoux, 28-Jun-2017)

Ref Expression
Hypotheses gsumpropd2.f φ F V
gsumpropd2.g φ G W
gsumpropd2.h φ H X
gsumpropd2.b φ Base G = Base H
gsumpropd2.c φ s Base G t Base G s + G t Base G
gsumpropd2.e φ s Base G t Base G s + G t = s + H t
gsumpropd2.n φ Fun F
gsumpropd2.r φ ran F Base G
gsumprop2dlem.1 A = F -1 V s Base G | t Base G s + G t = t t + G s = t
gsumprop2dlem.2 B = F -1 V s Base H | t Base H s + H t = t t + H s = t
Assertion gsumpropd2lem φ G F = H F

Proof

Step Hyp Ref Expression
1 gsumpropd2.f φ F V
2 gsumpropd2.g φ G W
3 gsumpropd2.h φ H X
4 gsumpropd2.b φ Base G = Base H
5 gsumpropd2.c φ s Base G t Base G s + G t Base G
6 gsumpropd2.e φ s Base G t Base G s + G t = s + H t
7 gsumpropd2.n φ Fun F
8 gsumpropd2.r φ ran F Base G
9 gsumprop2dlem.1 A = F -1 V s Base G | t Base G s + G t = t t + G s = t
10 gsumprop2dlem.2 B = F -1 V s Base H | t Base H s + H t = t t + H s = t
11 4 adantr φ s Base G Base G = Base H
12 6 eqeq1d φ s Base G t Base G s + G t = t s + H t = t
13 6 oveqrspc2v φ a Base G b Base G a + G b = a + H b
14 13 oveqrspc2v φ t Base G s Base G t + G s = t + H s
15 14 ancom2s φ s Base G t Base G t + G s = t + H s
16 15 eqeq1d φ s Base G t Base G t + G s = t t + H s = t
17 12 16 anbi12d φ s Base G t Base G s + G t = t t + G s = t s + H t = t t + H s = t
18 17 anassrs φ s Base G t Base G s + G t = t t + G s = t s + H t = t t + H s = t
19 11 18 raleqbidva φ s Base G t Base G s + G t = t t + G s = t t Base H s + H t = t t + H s = t
20 4 19 rabeqbidva φ s Base G | t Base G s + G t = t t + G s = t = s Base H | t Base H s + H t = t t + H s = t
21 20 sseq2d φ ran F s Base G | t Base G s + G t = t t + G s = t ran F s Base H | t Base H s + H t = t t + H s = t
22 eqidd φ Base G = Base G
23 22 4 6 grpidpropd φ 0 G = 0 H
24 simprl φ n m dom F = m n n m
25 8 ad2antrr φ n m dom F = m n s m n ran F Base G
26 7 ad2antrr φ n m dom F = m n s m n Fun F
27 simpr φ n m dom F = m n s m n s m n
28 simplrr φ n m dom F = m n s m n dom F = m n
29 27 28 eleqtrrd φ n m dom F = m n s m n s dom F
30 fvelrn Fun F s dom F F s ran F
31 26 29 30 syl2anc φ n m dom F = m n s m n F s ran F
32 25 31 sseldd φ n m dom F = m n s m n F s Base G
33 5 adantlr φ n m dom F = m n s Base G t Base G s + G t Base G
34 6 adantlr φ n m dom F = m n s Base G t Base G s + G t = s + H t
35 24 32 33 34 seqfeq4 φ n m dom F = m n seq m + G F n = seq m + H F n
36 35 eqeq2d φ n m dom F = m n x = seq m + G F n x = seq m + H F n
37 36 anassrs φ n m dom F = m n x = seq m + G F n x = seq m + H F n
38 37 pm5.32da φ n m dom F = m n x = seq m + G F n dom F = m n x = seq m + H F n
39 38 rexbidva φ n m dom F = m n x = seq m + G F n n m dom F = m n x = seq m + H F n
40 39 exbidv φ m n m dom F = m n x = seq m + G F n m n m dom F = m n x = seq m + H F n
41 40 iotabidv φ ι x | m n m dom F = m n x = seq m + G F n = ι x | m n m dom F = m n x = seq m + H F n
42 20 difeq2d φ V s Base G | t Base G s + G t = t t + G s = t = V s Base H | t Base H s + H t = t t + H s = t
43 42 imaeq2d φ F -1 V s Base G | t Base G s + G t = t t + G s = t = F -1 V s Base H | t Base H s + H t = t t + H s = t
44 43 9 10 3eqtr4g φ A = B
45 44 fveq2d φ A = B
46 45 fveq2d φ seq 1 + G F f A = seq 1 + G F f B
47 46 adantr φ f : 1 A 1-1 onto A seq 1 + G F f A = seq 1 + G F f B
48 simpr φ f : 1 A 1-1 onto A B 1 B 1
49 8 ad3antrrr φ f : 1 A 1-1 onto A B 1 a 1 B ran F Base G
50 f1ofun f : 1 A 1-1 onto A Fun f
51 50 ad3antlr φ f : 1 A 1-1 onto A B 1 a 1 B Fun f
52 simpr φ f : 1 A 1-1 onto A B 1 a 1 B a 1 B
53 f1odm f : 1 A 1-1 onto A dom f = 1 A
54 53 ad3antlr φ f : 1 A 1-1 onto A B 1 a 1 B dom f = 1 A
55 45 oveq2d φ 1 A = 1 B
56 55 ad3antrrr φ f : 1 A 1-1 onto A B 1 a 1 B 1 A = 1 B
57 54 56 eqtrd φ f : 1 A 1-1 onto A B 1 a 1 B dom f = 1 B
58 52 57 eleqtrrd φ f : 1 A 1-1 onto A B 1 a 1 B a dom f
59 fvco Fun f a dom f F f a = F f a
60 51 58 59 syl2anc φ f : 1 A 1-1 onto A B 1 a 1 B F f a = F f a
61 7 ad3antrrr φ f : 1 A 1-1 onto A B 1 a 1 B Fun F
62 difpreima Fun F F -1 V s Base G | t Base G s + G t = t t + G s = t = F -1 V F -1 s Base G | t Base G s + G t = t t + G s = t
63 7 62 syl φ F -1 V s Base G | t Base G s + G t = t t + G s = t = F -1 V F -1 s Base G | t Base G s + G t = t t + G s = t
64 9 63 eqtrid φ A = F -1 V F -1 s Base G | t Base G s + G t = t t + G s = t
65 difss F -1 V F -1 s Base G | t Base G s + G t = t t + G s = t F -1 V
66 64 65 eqsstrdi φ A F -1 V
67 dfdm4 dom F = ran F -1
68 dfrn4 ran F -1 = F -1 V
69 67 68 eqtri dom F = F -1 V
70 66 69 sseqtrrdi φ A dom F
71 70 ad3antrrr φ f : 1 A 1-1 onto A B 1 a 1 B A dom F
72 f1of f : 1 A 1-1 onto A f : 1 A A
73 72 ad3antlr φ f : 1 A 1-1 onto A B 1 a 1 B f : 1 A A
74 52 56 eleqtrrd φ f : 1 A 1-1 onto A B 1 a 1 B a 1 A
75 73 74 ffvelrnd φ f : 1 A 1-1 onto A B 1 a 1 B f a A
76 71 75 sseldd φ f : 1 A 1-1 onto A B 1 a 1 B f a dom F
77 fvelrn Fun F f a dom F F f a ran F
78 61 76 77 syl2anc φ f : 1 A 1-1 onto A B 1 a 1 B F f a ran F
79 60 78 eqeltrd φ f : 1 A 1-1 onto A B 1 a 1 B F f a ran F
80 49 79 sseldd φ f : 1 A 1-1 onto A B 1 a 1 B F f a Base G
81 5 caovclg φ a Base G b Base G a + G b Base G
82 81 ad4ant14 φ f : 1 A 1-1 onto A B 1 a Base G b Base G a + G b Base G
83 13 ad4ant14 φ f : 1 A 1-1 onto A B 1 a Base G b Base G a + G b = a + H b
84 48 80 82 83 seqfeq4 φ f : 1 A 1-1 onto A B 1 seq 1 + G F f B = seq 1 + H F f B
85 simpr φ ¬ B 1 ¬ B 1
86 1z 1
87 seqfn 1 seq 1 + G F f Fn 1
88 fndm seq 1 + G F f Fn 1 dom seq 1 + G F f = 1
89 86 87 88 mp2b dom seq 1 + G F f = 1
90 89 eleq2i B dom seq 1 + G F f B 1
91 85 90 sylnibr φ ¬ B 1 ¬ B dom seq 1 + G F f
92 ndmfv ¬ B dom seq 1 + G F f seq 1 + G F f B =
93 91 92 syl φ ¬ B 1 seq 1 + G F f B =
94 seqfn 1 seq 1 + H F f Fn 1
95 fndm seq 1 + H F f Fn 1 dom seq 1 + H F f = 1
96 86 94 95 mp2b dom seq 1 + H F f = 1
97 96 eleq2i B dom seq 1 + H F f B 1
98 85 97 sylnibr φ ¬ B 1 ¬ B dom seq 1 + H F f
99 ndmfv ¬ B dom seq 1 + H F f seq 1 + H F f B =
100 98 99 syl φ ¬ B 1 seq 1 + H F f B =
101 93 100 eqtr4d φ ¬ B 1 seq 1 + G F f B = seq 1 + H F f B
102 101 adantlr φ f : 1 A 1-1 onto A ¬ B 1 seq 1 + G F f B = seq 1 + H F f B
103 84 102 pm2.61dan φ f : 1 A 1-1 onto A seq 1 + G F f B = seq 1 + H F f B
104 47 103 eqtrd φ f : 1 A 1-1 onto A seq 1 + G F f A = seq 1 + H F f B
105 104 eqeq2d φ f : 1 A 1-1 onto A x = seq 1 + G F f A x = seq 1 + H F f B
106 105 pm5.32da φ f : 1 A 1-1 onto A x = seq 1 + G F f A f : 1 A 1-1 onto A x = seq 1 + H F f B
107 55 f1oeq2d φ f : 1 A 1-1 onto A f : 1 B 1-1 onto A
108 44 f1oeq3d φ f : 1 B 1-1 onto A f : 1 B 1-1 onto B
109 107 108 bitrd φ f : 1 A 1-1 onto A f : 1 B 1-1 onto B
110 109 anbi1d φ f : 1 A 1-1 onto A x = seq 1 + H F f B f : 1 B 1-1 onto B x = seq 1 + H F f B
111 106 110 bitrd φ f : 1 A 1-1 onto A x = seq 1 + G F f A f : 1 B 1-1 onto B x = seq 1 + H F f B
112 111 exbidv φ f f : 1 A 1-1 onto A x = seq 1 + G F f A f f : 1 B 1-1 onto B x = seq 1 + H F f B
113 112 iotabidv φ ι x | f f : 1 A 1-1 onto A x = seq 1 + G F f A = ι x | f f : 1 B 1-1 onto B x = seq 1 + H F f B
114 41 113 ifeq12d φ if dom F ran ι x | m n m dom F = m n x = seq m + G F n ι x | f f : 1 A 1-1 onto A x = seq 1 + G F f A = if dom F ran ι x | m n m dom F = m n x = seq m + H F n ι x | f f : 1 B 1-1 onto B x = seq 1 + H F f B
115 21 23 114 ifbieq12d φ if ran F s Base G | t Base G s + G t = t t + G s = t 0 G if dom F ran ι x | m n m dom F = m n x = seq m + G F n ι x | f f : 1 A 1-1 onto A x = seq 1 + G F f A = if ran F s Base H | t Base H s + H t = t t + H s = t 0 H if dom F ran ι x | m n m dom F = m n x = seq m + H F n ι x | f f : 1 B 1-1 onto B x = seq 1 + H F f B
116 eqid Base G = Base G
117 eqid 0 G = 0 G
118 eqid + G = + G
119 eqid s Base G | t Base G s + G t = t t + G s = t = s Base G | t Base G s + G t = t t + G s = t
120 9 a1i φ A = F -1 V s Base G | t Base G s + G t = t t + G s = t
121 eqidd φ dom F = dom F
122 116 117 118 119 120 2 1 121 gsumvalx φ G F = if ran F s Base G | t Base G s + G t = t t + G s = t 0 G if dom F ran ι x | m n m dom F = m n x = seq m + G F n ι x | f f : 1 A 1-1 onto A x = seq 1 + G F f A
123 eqid Base H = Base H
124 eqid 0 H = 0 H
125 eqid + H = + H
126 eqid s Base H | t Base H s + H t = t t + H s = t = s Base H | t Base H s + H t = t t + H s = t
127 10 a1i φ B = F -1 V s Base H | t Base H s + H t = t t + H s = t
128 123 124 125 126 127 3 1 121 gsumvalx φ H F = if ran F s Base H | t Base H s + H t = t t + H s = t 0 H if dom F ran ι x | m n m dom F = m n x = seq m + H F n ι x | f f : 1 B 1-1 onto B x = seq 1 + H F f B
129 115 122 128 3eqtr4d φ G F = H F