| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumpropd2.f |  | 
						
							| 2 |  | gsumpropd2.g |  | 
						
							| 3 |  | gsumpropd2.h |  | 
						
							| 4 |  | gsumpropd2.b |  | 
						
							| 5 |  | gsumpropd2.c |  | 
						
							| 6 |  | gsumpropd2.e |  | 
						
							| 7 |  | gsumpropd2.n |  | 
						
							| 8 |  | gsumpropd2.r |  | 
						
							| 9 |  | gsumprop2dlem.1 |  | 
						
							| 10 |  | gsumprop2dlem.2 |  | 
						
							| 11 | 4 | adantr |  | 
						
							| 12 | 6 | eqeq1d |  | 
						
							| 13 | 6 | oveqrspc2v |  | 
						
							| 14 | 13 | oveqrspc2v |  | 
						
							| 15 | 14 | ancom2s |  | 
						
							| 16 | 15 | eqeq1d |  | 
						
							| 17 | 12 16 | anbi12d |  | 
						
							| 18 | 17 | anassrs |  | 
						
							| 19 | 11 18 | raleqbidva |  | 
						
							| 20 | 4 19 | rabeqbidva |  | 
						
							| 21 | 20 | sseq2d |  | 
						
							| 22 |  | eqidd |  | 
						
							| 23 | 22 4 6 | grpidpropd |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 | 8 | ad2antrr |  | 
						
							| 26 | 7 | ad2antrr |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 |  | simplrr |  | 
						
							| 29 | 27 28 | eleqtrrd |  | 
						
							| 30 |  | fvelrn |  | 
						
							| 31 | 26 29 30 | syl2anc |  | 
						
							| 32 | 25 31 | sseldd |  | 
						
							| 33 | 5 | adantlr |  | 
						
							| 34 | 6 | adantlr |  | 
						
							| 35 | 24 32 33 34 | seqfeq4 |  | 
						
							| 36 | 35 | eqeq2d |  | 
						
							| 37 | 36 | anassrs |  | 
						
							| 38 | 37 | pm5.32da |  | 
						
							| 39 | 38 | rexbidva |  | 
						
							| 40 | 39 | exbidv |  | 
						
							| 41 | 40 | iotabidv |  | 
						
							| 42 | 20 | difeq2d |  | 
						
							| 43 | 42 | imaeq2d |  | 
						
							| 44 | 43 9 10 | 3eqtr4g |  | 
						
							| 45 | 44 | fveq2d |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 |  | simpr |  | 
						
							| 49 | 8 | ad3antrrr |  | 
						
							| 50 |  | f1ofun |  | 
						
							| 51 | 50 | ad3antlr |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 |  | f1odm |  | 
						
							| 54 | 53 | ad3antlr |  | 
						
							| 55 | 45 | oveq2d |  | 
						
							| 56 | 55 | ad3antrrr |  | 
						
							| 57 | 54 56 | eqtrd |  | 
						
							| 58 | 52 57 | eleqtrrd |  | 
						
							| 59 |  | fvco |  | 
						
							| 60 | 51 58 59 | syl2anc |  | 
						
							| 61 | 7 | ad3antrrr |  | 
						
							| 62 |  | difpreima |  | 
						
							| 63 | 7 62 | syl |  | 
						
							| 64 | 9 63 | eqtrid |  | 
						
							| 65 |  | difss |  | 
						
							| 66 | 64 65 | eqsstrdi |  | 
						
							| 67 |  | dfdm4 |  | 
						
							| 68 |  | dfrn4 |  | 
						
							| 69 | 67 68 | eqtri |  | 
						
							| 70 | 66 69 | sseqtrrdi |  | 
						
							| 71 | 70 | ad3antrrr |  | 
						
							| 72 |  | f1of |  | 
						
							| 73 | 72 | ad3antlr |  | 
						
							| 74 | 52 56 | eleqtrrd |  | 
						
							| 75 | 73 74 | ffvelcdmd |  | 
						
							| 76 | 71 75 | sseldd |  | 
						
							| 77 |  | fvelrn |  | 
						
							| 78 | 61 76 77 | syl2anc |  | 
						
							| 79 | 60 78 | eqeltrd |  | 
						
							| 80 | 49 79 | sseldd |  | 
						
							| 81 | 5 | caovclg |  | 
						
							| 82 | 81 | ad4ant14 |  | 
						
							| 83 | 13 | ad4ant14 |  | 
						
							| 84 | 48 80 82 83 | seqfeq4 |  | 
						
							| 85 |  | simpr |  | 
						
							| 86 |  | 1z |  | 
						
							| 87 |  | seqfn |  | 
						
							| 88 |  | fndm |  | 
						
							| 89 | 86 87 88 | mp2b |  | 
						
							| 90 | 89 | eleq2i |  | 
						
							| 91 | 85 90 | sylnibr |  | 
						
							| 92 |  | ndmfv |  | 
						
							| 93 | 91 92 | syl |  | 
						
							| 94 |  | seqfn |  | 
						
							| 95 |  | fndm |  | 
						
							| 96 | 86 94 95 | mp2b |  | 
						
							| 97 | 96 | eleq2i |  | 
						
							| 98 | 85 97 | sylnibr |  | 
						
							| 99 |  | ndmfv |  | 
						
							| 100 | 98 99 | syl |  | 
						
							| 101 | 93 100 | eqtr4d |  | 
						
							| 102 | 101 | adantlr |  | 
						
							| 103 | 84 102 | pm2.61dan |  | 
						
							| 104 | 47 103 | eqtrd |  | 
						
							| 105 | 104 | eqeq2d |  | 
						
							| 106 | 105 | pm5.32da |  | 
						
							| 107 | 55 | f1oeq2d |  | 
						
							| 108 | 44 | f1oeq3d |  | 
						
							| 109 | 107 108 | bitrd |  | 
						
							| 110 | 109 | anbi1d |  | 
						
							| 111 | 106 110 | bitrd |  | 
						
							| 112 | 111 | exbidv |  | 
						
							| 113 | 112 | iotabidv |  | 
						
							| 114 | 41 113 | ifeq12d |  | 
						
							| 115 | 21 23 114 | ifbieq12d |  | 
						
							| 116 |  | eqid |  | 
						
							| 117 |  | eqid |  | 
						
							| 118 |  | eqid |  | 
						
							| 119 |  | eqid |  | 
						
							| 120 | 9 | a1i |  | 
						
							| 121 |  | eqidd |  | 
						
							| 122 | 116 117 118 119 120 2 1 121 | gsumvalx |  | 
						
							| 123 |  | eqid |  | 
						
							| 124 |  | eqid |  | 
						
							| 125 |  | eqid |  | 
						
							| 126 |  | eqid |  | 
						
							| 127 | 10 | a1i |  | 
						
							| 128 | 123 124 125 126 127 3 1 121 | gsumvalx |  | 
						
							| 129 | 115 122 128 | 3eqtr4d |  |