Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpropd2.f |
|
2 |
|
gsumpropd2.g |
|
3 |
|
gsumpropd2.h |
|
4 |
|
gsumpropd2.b |
|
5 |
|
gsumpropd2.c |
|
6 |
|
gsumpropd2.e |
|
7 |
|
gsumpropd2.n |
|
8 |
|
gsumpropd2.r |
|
9 |
|
gsumprop2dlem.1 |
|
10 |
|
gsumprop2dlem.2 |
|
11 |
4
|
adantr |
|
12 |
6
|
eqeq1d |
|
13 |
6
|
oveqrspc2v |
|
14 |
13
|
oveqrspc2v |
|
15 |
14
|
ancom2s |
|
16 |
15
|
eqeq1d |
|
17 |
12 16
|
anbi12d |
|
18 |
17
|
anassrs |
|
19 |
11 18
|
raleqbidva |
|
20 |
4 19
|
rabeqbidva |
|
21 |
20
|
sseq2d |
|
22 |
|
eqidd |
|
23 |
22 4 6
|
grpidpropd |
|
24 |
|
simprl |
|
25 |
8
|
ad2antrr |
|
26 |
7
|
ad2antrr |
|
27 |
|
simpr |
|
28 |
|
simplrr |
|
29 |
27 28
|
eleqtrrd |
|
30 |
|
fvelrn |
|
31 |
26 29 30
|
syl2anc |
|
32 |
25 31
|
sseldd |
|
33 |
5
|
adantlr |
|
34 |
6
|
adantlr |
|
35 |
24 32 33 34
|
seqfeq4 |
|
36 |
35
|
eqeq2d |
|
37 |
36
|
anassrs |
|
38 |
37
|
pm5.32da |
|
39 |
38
|
rexbidva |
|
40 |
39
|
exbidv |
|
41 |
40
|
iotabidv |
|
42 |
20
|
difeq2d |
|
43 |
42
|
imaeq2d |
|
44 |
43 9 10
|
3eqtr4g |
|
45 |
44
|
fveq2d |
|
46 |
45
|
fveq2d |
|
47 |
46
|
adantr |
|
48 |
|
simpr |
|
49 |
8
|
ad3antrrr |
|
50 |
|
f1ofun |
|
51 |
50
|
ad3antlr |
|
52 |
|
simpr |
|
53 |
|
f1odm |
|
54 |
53
|
ad3antlr |
|
55 |
45
|
oveq2d |
|
56 |
55
|
ad3antrrr |
|
57 |
54 56
|
eqtrd |
|
58 |
52 57
|
eleqtrrd |
|
59 |
|
fvco |
|
60 |
51 58 59
|
syl2anc |
|
61 |
7
|
ad3antrrr |
|
62 |
|
difpreima |
|
63 |
7 62
|
syl |
|
64 |
9 63
|
eqtrid |
|
65 |
|
difss |
|
66 |
64 65
|
eqsstrdi |
|
67 |
|
dfdm4 |
|
68 |
|
dfrn4 |
|
69 |
67 68
|
eqtri |
|
70 |
66 69
|
sseqtrrdi |
|
71 |
70
|
ad3antrrr |
|
72 |
|
f1of |
|
73 |
72
|
ad3antlr |
|
74 |
52 56
|
eleqtrrd |
|
75 |
73 74
|
ffvelrnd |
|
76 |
71 75
|
sseldd |
|
77 |
|
fvelrn |
|
78 |
61 76 77
|
syl2anc |
|
79 |
60 78
|
eqeltrd |
|
80 |
49 79
|
sseldd |
|
81 |
5
|
caovclg |
|
82 |
81
|
ad4ant14 |
|
83 |
13
|
ad4ant14 |
|
84 |
48 80 82 83
|
seqfeq4 |
|
85 |
|
simpr |
|
86 |
|
1z |
|
87 |
|
seqfn |
|
88 |
|
fndm |
|
89 |
86 87 88
|
mp2b |
|
90 |
89
|
eleq2i |
|
91 |
85 90
|
sylnibr |
|
92 |
|
ndmfv |
|
93 |
91 92
|
syl |
|
94 |
|
seqfn |
|
95 |
|
fndm |
|
96 |
86 94 95
|
mp2b |
|
97 |
96
|
eleq2i |
|
98 |
85 97
|
sylnibr |
|
99 |
|
ndmfv |
|
100 |
98 99
|
syl |
|
101 |
93 100
|
eqtr4d |
|
102 |
101
|
adantlr |
|
103 |
84 102
|
pm2.61dan |
|
104 |
47 103
|
eqtrd |
|
105 |
104
|
eqeq2d |
|
106 |
105
|
pm5.32da |
|
107 |
55
|
f1oeq2d |
|
108 |
44
|
f1oeq3d |
|
109 |
107 108
|
bitrd |
|
110 |
109
|
anbi1d |
|
111 |
106 110
|
bitrd |
|
112 |
111
|
exbidv |
|
113 |
112
|
iotabidv |
|
114 |
41 113
|
ifeq12d |
|
115 |
21 23 114
|
ifbieq12d |
|
116 |
|
eqid |
|
117 |
|
eqid |
|
118 |
|
eqid |
|
119 |
|
eqid |
|
120 |
9
|
a1i |
|
121 |
|
eqidd |
|
122 |
116 117 118 119 120 2 1 121
|
gsumvalx |
|
123 |
|
eqid |
|
124 |
|
eqid |
|
125 |
|
eqid |
|
126 |
|
eqid |
|
127 |
10
|
a1i |
|
128 |
123 124 125 126 127 3 1 121
|
gsumvalx |
|
129 |
115 122 128
|
3eqtr4d |
|