Metamath Proof Explorer


Theorem gsumpt

Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumpt.b B = Base G
gsumpt.z 0 ˙ = 0 G
gsumpt.g φ G Mnd
gsumpt.a φ A V
gsumpt.x φ X A
gsumpt.f φ F : A B
gsumpt.s φ F supp 0 ˙ X
Assertion gsumpt φ G F = F X

Proof

Step Hyp Ref Expression
1 gsumpt.b B = Base G
2 gsumpt.z 0 ˙ = 0 G
3 gsumpt.g φ G Mnd
4 gsumpt.a φ A V
5 gsumpt.x φ X A
6 gsumpt.f φ F : A B
7 gsumpt.s φ F supp 0 ˙ X
8 5 snssd φ X A
9 6 8 feqresmpt φ F X = a X F a
10 9 oveq2d φ G F X = G a X F a
11 eqid Cntz G = Cntz G
12 6 5 ffvelrnd φ F X B
13 eqidd φ F X + G F X = F X + G F X
14 eqid + G = + G
15 1 14 11 elcntzsn F X B F X Cntz G F X F X B F X + G F X = F X + G F X
16 12 15 syl φ F X Cntz G F X F X B F X + G F X = F X + G F X
17 12 13 16 mpbir2and φ F X Cntz G F X
18 17 snssd φ F X Cntz G F X
19 eqid mrCls SubMnd G = mrCls SubMnd G
20 eqid G 𝑠 mrCls SubMnd G F X = G 𝑠 mrCls SubMnd G F X
21 11 19 20 cntzspan G Mnd F X Cntz G F X G 𝑠 mrCls SubMnd G F X CMnd
22 3 18 21 syl2anc φ G 𝑠 mrCls SubMnd G F X CMnd
23 1 submacs G Mnd SubMnd G ACS B
24 acsmre SubMnd G ACS B SubMnd G Moore B
25 3 23 24 3syl φ SubMnd G Moore B
26 12 snssd φ F X B
27 19 mrccl SubMnd G Moore B F X B mrCls SubMnd G F X SubMnd G
28 25 26 27 syl2anc φ mrCls SubMnd G F X SubMnd G
29 20 11 submcmn2 mrCls SubMnd G F X SubMnd G G 𝑠 mrCls SubMnd G F X CMnd mrCls SubMnd G F X Cntz G mrCls SubMnd G F X
30 28 29 syl φ G 𝑠 mrCls SubMnd G F X CMnd mrCls SubMnd G F X Cntz G mrCls SubMnd G F X
31 22 30 mpbid φ mrCls SubMnd G F X Cntz G mrCls SubMnd G F X
32 6 ffnd φ F Fn A
33 simpr φ a A a = X a = X
34 33 fveq2d φ a A a = X F a = F X
35 25 19 26 mrcssidd φ F X mrCls SubMnd G F X
36 fvex F X V
37 36 snss F X mrCls SubMnd G F X F X mrCls SubMnd G F X
38 35 37 sylibr φ F X mrCls SubMnd G F X
39 38 ad2antrr φ a A a = X F X mrCls SubMnd G F X
40 34 39 eqeltrd φ a A a = X F a mrCls SubMnd G F X
41 eldifsn a A X a A a X
42 2 fvexi 0 ˙ V
43 42 a1i φ 0 ˙ V
44 6 7 4 43 suppssr φ a A X F a = 0 ˙
45 41 44 sylan2br φ a A a X F a = 0 ˙
46 2 subm0cl mrCls SubMnd G F X SubMnd G 0 ˙ mrCls SubMnd G F X
47 28 46 syl φ 0 ˙ mrCls SubMnd G F X
48 47 adantr φ a A a X 0 ˙ mrCls SubMnd G F X
49 45 48 eqeltrd φ a A a X F a mrCls SubMnd G F X
50 49 anassrs φ a A a X F a mrCls SubMnd G F X
51 40 50 pm2.61dane φ a A F a mrCls SubMnd G F X
52 51 ralrimiva φ a A F a mrCls SubMnd G F X
53 ffnfv F : A mrCls SubMnd G F X F Fn A a A F a mrCls SubMnd G F X
54 32 52 53 sylanbrc φ F : A mrCls SubMnd G F X
55 54 frnd φ ran F mrCls SubMnd G F X
56 11 cntzidss mrCls SubMnd G F X Cntz G mrCls SubMnd G F X ran F mrCls SubMnd G F X ran F Cntz G ran F
57 31 55 56 syl2anc φ ran F Cntz G ran F
58 6 ffund φ Fun F
59 snfi X Fin
60 ssfi X Fin F supp 0 ˙ X F supp 0 ˙ Fin
61 59 7 60 sylancr φ F supp 0 ˙ Fin
62 6 4 fexd φ F V
63 isfsupp F V 0 ˙ V finSupp 0 ˙ F Fun F F supp 0 ˙ Fin
64 62 43 63 syl2anc φ finSupp 0 ˙ F Fun F F supp 0 ˙ Fin
65 58 61 64 mpbir2and φ finSupp 0 ˙ F
66 1 2 11 3 4 6 57 7 65 gsumzres φ G F X = G F
67 fveq2 a = X F a = F X
68 1 67 gsumsn G Mnd X A F X B G a X F a = F X
69 3 5 12 68 syl3anc φ G a X F a = F X
70 10 66 69 3eqtr3d φ G F = F X