| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpt.b |
|
| 2 |
|
gsumpt.z |
|
| 3 |
|
gsumpt.g |
|
| 4 |
|
gsumpt.a |
|
| 5 |
|
gsumpt.x |
|
| 6 |
|
gsumpt.f |
|
| 7 |
|
gsumpt.s |
|
| 8 |
5
|
snssd |
|
| 9 |
6 8
|
feqresmpt |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
eqid |
|
| 12 |
6 5
|
ffvelcdmd |
|
| 13 |
|
eqidd |
|
| 14 |
|
eqid |
|
| 15 |
1 14 11
|
elcntzsn |
|
| 16 |
12 15
|
syl |
|
| 17 |
12 13 16
|
mpbir2and |
|
| 18 |
17
|
snssd |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
11 19 20
|
cntzspan |
|
| 22 |
3 18 21
|
syl2anc |
|
| 23 |
1
|
submacs |
|
| 24 |
|
acsmre |
|
| 25 |
3 23 24
|
3syl |
|
| 26 |
12
|
snssd |
|
| 27 |
19
|
mrccl |
|
| 28 |
25 26 27
|
syl2anc |
|
| 29 |
20 11
|
submcmn2 |
|
| 30 |
28 29
|
syl |
|
| 31 |
22 30
|
mpbid |
|
| 32 |
6
|
ffnd |
|
| 33 |
|
simpr |
|
| 34 |
33
|
fveq2d |
|
| 35 |
25 19 26
|
mrcssidd |
|
| 36 |
|
fvex |
|
| 37 |
36
|
snss |
|
| 38 |
35 37
|
sylibr |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
34 39
|
eqeltrd |
|
| 41 |
|
eldifsn |
|
| 42 |
2
|
fvexi |
|
| 43 |
42
|
a1i |
|
| 44 |
6 7 4 43
|
suppssr |
|
| 45 |
41 44
|
sylan2br |
|
| 46 |
2
|
subm0cl |
|
| 47 |
28 46
|
syl |
|
| 48 |
47
|
adantr |
|
| 49 |
45 48
|
eqeltrd |
|
| 50 |
49
|
anassrs |
|
| 51 |
40 50
|
pm2.61dane |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
|
ffnfv |
|
| 54 |
32 52 53
|
sylanbrc |
|
| 55 |
54
|
frnd |
|
| 56 |
11
|
cntzidss |
|
| 57 |
31 55 56
|
syl2anc |
|
| 58 |
6
|
ffund |
|
| 59 |
|
snfi |
|
| 60 |
|
ssfi |
|
| 61 |
59 7 60
|
sylancr |
|
| 62 |
6 4
|
fexd |
|
| 63 |
|
isfsupp |
|
| 64 |
62 43 63
|
syl2anc |
|
| 65 |
58 61 64
|
mpbir2and |
|
| 66 |
1 2 11 3 4 6 57 7 65
|
gsumzres |
|
| 67 |
|
fveq2 |
|
| 68 |
1 67
|
gsumsn |
|
| 69 |
3 5 12 68
|
syl3anc |
|
| 70 |
10 66 69
|
3eqtr3d |
|