Metamath Proof Explorer


Theorem gsumreidx

Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in Lang p. 5 with M = 1 . (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses gsumreidx.b B = Base G
gsumreidx.z 0 ˙ = 0 G
gsumreidx.g φ G CMnd
gsumreidx.f φ F : M N B
gsumreidx.h φ H : M N 1-1 onto M N
Assertion gsumreidx φ G F = G F H

Proof

Step Hyp Ref Expression
1 gsumreidx.b B = Base G
2 gsumreidx.z 0 ˙ = 0 G
3 gsumreidx.g φ G CMnd
4 gsumreidx.f φ F : M N B
5 gsumreidx.h φ H : M N 1-1 onto M N
6 ovexd φ M N V
7 fzfid φ M N Fin
8 2 fvexi 0 ˙ V
9 8 a1i φ 0 ˙ V
10 4 7 9 fdmfifsupp φ finSupp 0 ˙ F
11 1 2 3 6 4 10 5 gsumf1o φ G F = G F H