Metamath Proof Explorer


Theorem gsumress

Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither G nor H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses gsumress.b B = Base G
gsumress.o + ˙ = + G
gsumress.h H = G 𝑠 S
gsumress.g φ G V
gsumress.a φ A X
gsumress.s φ S B
gsumress.f φ F : A S
gsumress.z φ 0 ˙ S
gsumress.c φ x B 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
Assertion gsumress φ G F = H F

Proof

Step Hyp Ref Expression
1 gsumress.b B = Base G
2 gsumress.o + ˙ = + G
3 gsumress.h H = G 𝑠 S
4 gsumress.g φ G V
5 gsumress.a φ A X
6 gsumress.s φ S B
7 gsumress.f φ F : A S
8 gsumress.z φ 0 ˙ S
9 gsumress.c φ x B 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
10 oveq1 y = 0 ˙ y + ˙ x = 0 ˙ + ˙ x
11 10 eqeq1d y = 0 ˙ y + ˙ x = x 0 ˙ + ˙ x = x
12 11 ovanraleqv y = 0 ˙ x B y + ˙ x = x x + ˙ y = x x B 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
13 6 8 sseldd φ 0 ˙ B
14 9 ralrimiva φ x B 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
15 12 13 14 elrabd φ 0 ˙ y B | x B y + ˙ x = x x + ˙ y = x
16 15 snssd φ 0 ˙ y B | x B y + ˙ x = x x + ˙ y = x
17 eqid 0 G = 0 G
18 eqid y B | x B y + ˙ x = x x + ˙ y = x = y B | x B y + ˙ x = x x + ˙ y = x
19 1 17 2 18 mgmidsssn0 G V y B | x B y + ˙ x = x x + ˙ y = x 0 G
20 4 19 syl φ y B | x B y + ˙ x = x x + ˙ y = x 0 G
21 20 15 sseldd φ 0 ˙ 0 G
22 elsni 0 ˙ 0 G 0 ˙ = 0 G
23 21 22 syl φ 0 ˙ = 0 G
24 23 sneqd φ 0 ˙ = 0 G
25 20 24 sseqtrrd φ y B | x B y + ˙ x = x x + ˙ y = x 0 ˙
26 16 25 eqssd φ 0 ˙ = y B | x B y + ˙ x = x x + ˙ y = x
27 11 ovanraleqv y = 0 ˙ x S y + ˙ x = x x + ˙ y = x x S 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
28 6 sselda φ x S x B
29 28 9 syldan φ x S 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
30 29 ralrimiva φ x S 0 ˙ + ˙ x = x x + ˙ 0 ˙ = x
31 27 8 30 elrabd φ 0 ˙ y S | x S y + ˙ x = x x + ˙ y = x
32 3 1 ressbas2 S B S = Base H
33 6 32 syl φ S = Base H
34 fvex Base H V
35 33 34 eqeltrdi φ S V
36 3 2 ressplusg S V + ˙ = + H
37 35 36 syl φ + ˙ = + H
38 37 oveqd φ y + ˙ x = y + H x
39 38 eqeq1d φ y + ˙ x = x y + H x = x
40 37 oveqd φ x + ˙ y = x + H y
41 40 eqeq1d φ x + ˙ y = x x + H y = x
42 39 41 anbi12d φ y + ˙ x = x x + ˙ y = x y + H x = x x + H y = x
43 33 42 raleqbidv φ x S y + ˙ x = x x + ˙ y = x x Base H y + H x = x x + H y = x
44 33 43 rabeqbidv φ y S | x S y + ˙ x = x x + ˙ y = x = y Base H | x Base H y + H x = x x + H y = x
45 31 44 eleqtrd φ 0 ˙ y Base H | x Base H y + H x = x x + H y = x
46 45 snssd φ 0 ˙ y Base H | x Base H y + H x = x x + H y = x
47 3 ovexi H V
48 47 a1i φ H V
49 eqid Base H = Base H
50 eqid 0 H = 0 H
51 eqid + H = + H
52 eqid y Base H | x Base H y + H x = x x + H y = x = y Base H | x Base H y + H x = x x + H y = x
53 49 50 51 52 mgmidsssn0 H V y Base H | x Base H y + H x = x x + H y = x 0 H
54 48 53 syl φ y Base H | x Base H y + H x = x x + H y = x 0 H
55 54 45 sseldd φ 0 ˙ 0 H
56 elsni 0 ˙ 0 H 0 ˙ = 0 H
57 55 56 syl φ 0 ˙ = 0 H
58 57 sneqd φ 0 ˙ = 0 H
59 54 58 sseqtrrd φ y Base H | x Base H y + H x = x x + H y = x 0 ˙
60 46 59 eqssd φ 0 ˙ = y Base H | x Base H y + H x = x x + H y = x
61 26 60 eqtr3d φ y B | x B y + ˙ x = x x + ˙ y = x = y Base H | x Base H y + H x = x x + H y = x
62 61 sseq2d φ ran F y B | x B y + ˙ x = x x + ˙ y = x ran F y Base H | x Base H y + H x = x x + H y = x
63 23 57 eqtr3d φ 0 G = 0 H
64 37 seqeq2d φ seq m + ˙ F = seq m + H F
65 64 fveq1d φ seq m + ˙ F n = seq m + H F n
66 65 eqeq2d φ z = seq m + ˙ F n z = seq m + H F n
67 66 anbi2d φ A = m n z = seq m + ˙ F n A = m n z = seq m + H F n
68 67 rexbidv φ n m A = m n z = seq m + ˙ F n n m A = m n z = seq m + H F n
69 68 exbidv φ m n m A = m n z = seq m + ˙ F n m n m A = m n z = seq m + H F n
70 69 iotabidv φ ι z | m n m A = m n z = seq m + ˙ F n = ι z | m n m A = m n z = seq m + H F n
71 37 seqeq2d φ seq 1 + ˙ F f = seq 1 + H F f
72 71 fveq1d φ seq 1 + ˙ F f F -1 V 0 ˙ = seq 1 + H F f F -1 V 0 ˙
73 72 eqeq2d φ z = seq 1 + ˙ F f F -1 V 0 ˙ z = seq 1 + H F f F -1 V 0 ˙
74 73 anbi2d φ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + ˙ F f F -1 V 0 ˙ f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + H F f F -1 V 0 ˙
75 74 exbidv φ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + ˙ F f F -1 V 0 ˙ f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + H F f F -1 V 0 ˙
76 75 iotabidv φ ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + ˙ F f F -1 V 0 ˙ = ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + H F f F -1 V 0 ˙
77 70 76 ifeq12d φ if A ran ι z | m n m A = m n z = seq m + ˙ F n ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + ˙ F f F -1 V 0 ˙ = if A ran ι z | m n m A = m n z = seq m + H F n ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + H F f F -1 V 0 ˙
78 62 63 77 ifbieq12d φ if ran F y B | x B y + ˙ x = x x + ˙ y = x 0 G if A ran ι z | m n m A = m n z = seq m + ˙ F n ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + ˙ F f F -1 V 0 ˙ = if ran F y Base H | x Base H y + H x = x x + H y = x 0 H if A ran ι z | m n m A = m n z = seq m + H F n ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + H F f F -1 V 0 ˙
79 26 difeq2d φ V 0 ˙ = V y B | x B y + ˙ x = x x + ˙ y = x
80 79 imaeq2d φ F -1 V 0 ˙ = F -1 V y B | x B y + ˙ x = x x + ˙ y = x
81 7 6 fssd φ F : A B
82 1 17 2 18 80 4 5 81 gsumval φ G F = if ran F y B | x B y + ˙ x = x x + ˙ y = x 0 G if A ran ι z | m n m A = m n z = seq m + ˙ F n ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + ˙ F f F -1 V 0 ˙
83 60 difeq2d φ V 0 ˙ = V y Base H | x Base H y + H x = x x + H y = x
84 83 imaeq2d φ F -1 V 0 ˙ = F -1 V y Base H | x Base H y + H x = x x + H y = x
85 33 feq3d φ F : A S F : A Base H
86 7 85 mpbid φ F : A Base H
87 49 50 51 52 84 48 5 86 gsumval φ H F = if ran F y Base H | x Base H y + H x = x x + H y = x 0 H if A ran ι z | m n m A = m n z = seq m + H F n ι z | f f : 1 F -1 V 0 ˙ 1-1 onto F -1 V 0 ˙ z = seq 1 + H F f F -1 V 0 ˙
88 78 82 87 3eqtr4d φ G F = H F