| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumress.b |  | 
						
							| 2 |  | gsumress.o |  | 
						
							| 3 |  | gsumress.h |  | 
						
							| 4 |  | gsumress.g |  | 
						
							| 5 |  | gsumress.a |  | 
						
							| 6 |  | gsumress.s |  | 
						
							| 7 |  | gsumress.f |  | 
						
							| 8 |  | gsumress.z |  | 
						
							| 9 |  | gsumress.c |  | 
						
							| 10 |  | oveq1 |  | 
						
							| 11 | 10 | eqeq1d |  | 
						
							| 12 | 11 | ovanraleqv |  | 
						
							| 13 | 6 8 | sseldd |  | 
						
							| 14 | 9 | ralrimiva |  | 
						
							| 15 | 12 13 14 | elrabd |  | 
						
							| 16 | 15 | snssd |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 1 17 2 18 | mgmidsssn0 |  | 
						
							| 20 | 4 19 | syl |  | 
						
							| 21 | 20 15 | sseldd |  | 
						
							| 22 |  | elsni |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 23 | sneqd |  | 
						
							| 25 | 20 24 | sseqtrrd |  | 
						
							| 26 | 16 25 | eqssd |  | 
						
							| 27 | 11 | ovanraleqv |  | 
						
							| 28 | 6 | sselda |  | 
						
							| 29 | 28 9 | syldan |  | 
						
							| 30 | 29 | ralrimiva |  | 
						
							| 31 | 27 8 30 | elrabd |  | 
						
							| 32 | 3 1 | ressbas2 |  | 
						
							| 33 | 6 32 | syl |  | 
						
							| 34 |  | fvex |  | 
						
							| 35 | 33 34 | eqeltrdi |  | 
						
							| 36 | 3 2 | ressplusg |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 | 37 | oveqd |  | 
						
							| 39 | 38 | eqeq1d |  | 
						
							| 40 | 37 | oveqd |  | 
						
							| 41 | 40 | eqeq1d |  | 
						
							| 42 | 39 41 | anbi12d |  | 
						
							| 43 | 33 42 | raleqbidv |  | 
						
							| 44 | 33 43 | rabeqbidv |  | 
						
							| 45 | 31 44 | eleqtrd |  | 
						
							| 46 | 45 | snssd |  | 
						
							| 47 | 3 | ovexi |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 | 49 50 51 52 | mgmidsssn0 |  | 
						
							| 54 | 48 53 | syl |  | 
						
							| 55 | 54 45 | sseldd |  | 
						
							| 56 |  | elsni |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 57 | sneqd |  | 
						
							| 59 | 54 58 | sseqtrrd |  | 
						
							| 60 | 46 59 | eqssd |  | 
						
							| 61 | 26 60 | eqtr3d |  | 
						
							| 62 | 61 | sseq2d |  | 
						
							| 63 | 23 57 | eqtr3d |  | 
						
							| 64 | 37 | seqeq2d |  | 
						
							| 65 | 64 | fveq1d |  | 
						
							| 66 | 65 | eqeq2d |  | 
						
							| 67 | 66 | anbi2d |  | 
						
							| 68 | 67 | rexbidv |  | 
						
							| 69 | 68 | exbidv |  | 
						
							| 70 | 69 | iotabidv |  | 
						
							| 71 | 37 | seqeq2d |  | 
						
							| 72 | 71 | fveq1d |  | 
						
							| 73 | 72 | eqeq2d |  | 
						
							| 74 | 73 | anbi2d |  | 
						
							| 75 | 74 | exbidv |  | 
						
							| 76 | 75 | iotabidv |  | 
						
							| 77 | 70 76 | ifeq12d |  | 
						
							| 78 | 62 63 77 | ifbieq12d |  | 
						
							| 79 | 26 | difeq2d |  | 
						
							| 80 | 79 | imaeq2d |  | 
						
							| 81 | 7 6 | fssd |  | 
						
							| 82 | 1 17 2 18 80 4 5 81 | gsumval |  | 
						
							| 83 | 60 | difeq2d |  | 
						
							| 84 | 83 | imaeq2d |  | 
						
							| 85 | 33 | feq3d |  | 
						
							| 86 | 7 85 | mpbid |  | 
						
							| 87 | 49 50 51 52 84 48 5 86 | gsumval |  | 
						
							| 88 | 78 82 87 | 3eqtr4d |  |