Step |
Hyp |
Ref |
Expression |
1 |
|
gsumress.b |
|
2 |
|
gsumress.o |
|
3 |
|
gsumress.h |
|
4 |
|
gsumress.g |
|
5 |
|
gsumress.a |
|
6 |
|
gsumress.s |
|
7 |
|
gsumress.f |
|
8 |
|
gsumress.z |
|
9 |
|
gsumress.c |
|
10 |
|
oveq1 |
|
11 |
10
|
eqeq1d |
|
12 |
11
|
ovanraleqv |
|
13 |
6 8
|
sseldd |
|
14 |
9
|
ralrimiva |
|
15 |
12 13 14
|
elrabd |
|
16 |
15
|
snssd |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
1 17 2 18
|
mgmidsssn0 |
|
20 |
4 19
|
syl |
|
21 |
20 15
|
sseldd |
|
22 |
|
elsni |
|
23 |
21 22
|
syl |
|
24 |
23
|
sneqd |
|
25 |
20 24
|
sseqtrrd |
|
26 |
16 25
|
eqssd |
|
27 |
11
|
ovanraleqv |
|
28 |
6
|
sselda |
|
29 |
28 9
|
syldan |
|
30 |
29
|
ralrimiva |
|
31 |
27 8 30
|
elrabd |
|
32 |
3 1
|
ressbas2 |
|
33 |
6 32
|
syl |
|
34 |
|
fvex |
|
35 |
33 34
|
eqeltrdi |
|
36 |
3 2
|
ressplusg |
|
37 |
35 36
|
syl |
|
38 |
37
|
oveqd |
|
39 |
38
|
eqeq1d |
|
40 |
37
|
oveqd |
|
41 |
40
|
eqeq1d |
|
42 |
39 41
|
anbi12d |
|
43 |
33 42
|
raleqbidv |
|
44 |
33 43
|
rabeqbidv |
|
45 |
31 44
|
eleqtrd |
|
46 |
45
|
snssd |
|
47 |
3
|
ovexi |
|
48 |
47
|
a1i |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
49 50 51 52
|
mgmidsssn0 |
|
54 |
48 53
|
syl |
|
55 |
54 45
|
sseldd |
|
56 |
|
elsni |
|
57 |
55 56
|
syl |
|
58 |
57
|
sneqd |
|
59 |
54 58
|
sseqtrrd |
|
60 |
46 59
|
eqssd |
|
61 |
26 60
|
eqtr3d |
|
62 |
61
|
sseq2d |
|
63 |
23 57
|
eqtr3d |
|
64 |
37
|
seqeq2d |
|
65 |
64
|
fveq1d |
|
66 |
65
|
eqeq2d |
|
67 |
66
|
anbi2d |
|
68 |
67
|
rexbidv |
|
69 |
68
|
exbidv |
|
70 |
69
|
iotabidv |
|
71 |
37
|
seqeq2d |
|
72 |
71
|
fveq1d |
|
73 |
72
|
eqeq2d |
|
74 |
73
|
anbi2d |
|
75 |
74
|
exbidv |
|
76 |
75
|
iotabidv |
|
77 |
70 76
|
ifeq12d |
|
78 |
62 63 77
|
ifbieq12d |
|
79 |
26
|
difeq2d |
|
80 |
79
|
imaeq2d |
|
81 |
7 6
|
fssd |
|
82 |
1 17 2 18 80 4 5 81
|
gsumval |
|
83 |
60
|
difeq2d |
|
84 |
83
|
imaeq2d |
|
85 |
33
|
feq3d |
|
86 |
7 85
|
mpbid |
|
87 |
49 50 51 52 84 48 5 86
|
gsumval |
|
88 |
78 82 87
|
3eqtr4d |
|