Metamath Proof Explorer


Theorem gsumsgrpccat

Description: Homomorphic property of not empty composites of a group sum over a semigroup. Formerly part of proof for gsumccat . (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses gsumwcl.b B = Base G
gsumsgrpccat.p + ˙ = + G
Assertion gsumsgrpccat G Smgrp W Word B X Word B W X G W ++ X = G W + ˙ G X

Proof

Step Hyp Ref Expression
1 gsumwcl.b B = Base G
2 gsumsgrpccat.p + ˙ = + G
3 simp1 G Smgrp W Word B X Word B W X G Smgrp
4 sgrpmgm G Smgrp G Mgm
5 1 2 mgmcl G Mgm x B y B x + ˙ y B
6 4 5 syl3an1 G Smgrp x B y B x + ˙ y B
7 6 3expb G Smgrp x B y B x + ˙ y B
8 3 7 sylan G Smgrp W Word B X Word B W X x B y B x + ˙ y B
9 1 2 sgrpass G Smgrp x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
10 3 9 sylan G Smgrp W Word B X Word B W X x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
11 lennncl W Word B W W
12 11 ad2ant2r W Word B X Word B W X W
13 12 3adant1 G Smgrp W Word B X Word B W X W
14 13 nnzd G Smgrp W Word B X Word B W X W
15 14 uzidd G Smgrp W Word B X Word B W X W W
16 lennncl X Word B X X
17 16 ad2ant2l W Word B X Word B W X X
18 17 3adant1 G Smgrp W Word B X Word B W X X
19 nnm1nn0 X X 1 0
20 18 19 syl G Smgrp W Word B X Word B W X X 1 0
21 uzaddcl W W X 1 0 W + X - 1 W
22 15 20 21 syl2anc G Smgrp W Word B X Word B W X W + X - 1 W
23 13 nncnd G Smgrp W Word B X Word B W X W
24 18 nncnd G Smgrp W Word B X Word B W X X
25 1cnd G Smgrp W Word B X Word B W X 1
26 23 24 25 addsubassd G Smgrp W Word B X Word B W X W + X - 1 = W + X - 1
27 ax-1cn 1
28 npcan W 1 W - 1 + 1 = W
29 23 27 28 sylancl G Smgrp W Word B X Word B W X W - 1 + 1 = W
30 29 fveq2d G Smgrp W Word B X Word B W X W - 1 + 1 = W
31 22 26 30 3eltr4d G Smgrp W Word B X Word B W X W + X - 1 W - 1 + 1
32 nnm1nn0 W W 1 0
33 13 32 syl G Smgrp W Word B X Word B W X W 1 0
34 nn0uz 0 = 0
35 33 34 eleqtrdi G Smgrp W Word B X Word B W X W 1 0
36 ccatcl W Word B X Word B W ++ X Word B
37 36 3ad2ant2 G Smgrp W Word B X Word B W X W ++ X Word B
38 wrdf W ++ X Word B W ++ X : 0 ..^ W ++ X B
39 37 38 syl G Smgrp W Word B X Word B W X W ++ X : 0 ..^ W ++ X B
40 ccatlen W Word B X Word B W ++ X = W + X
41 40 3ad2ant2 G Smgrp W Word B X Word B W X W ++ X = W + X
42 41 oveq2d G Smgrp W Word B X Word B W X 0 ..^ W ++ X = 0 ..^ W + X
43 18 nnzd G Smgrp W Word B X Word B W X X
44 14 43 zaddcld G Smgrp W Word B X Word B W X W + X
45 fzoval W + X 0 ..^ W + X = 0 W + X - 1
46 44 45 syl G Smgrp W Word B X Word B W X 0 ..^ W + X = 0 W + X - 1
47 42 46 eqtrd G Smgrp W Word B X Word B W X 0 ..^ W ++ X = 0 W + X - 1
48 47 feq2d G Smgrp W Word B X Word B W X W ++ X : 0 ..^ W ++ X B W ++ X : 0 W + X - 1 B
49 39 48 mpbid G Smgrp W Word B X Word B W X W ++ X : 0 W + X - 1 B
50 49 ffvelcdmda G Smgrp W Word B X Word B W X x 0 W + X - 1 W ++ X x B
51 8 10 31 35 50 seqsplit G Smgrp W Word B X Word B W X seq 0 + ˙ W ++ X W + X - 1 = seq 0 + ˙ W ++ X W 1 + ˙ seq W - 1 + 1 + ˙ W ++ X W + X - 1
52 simpl2l G Smgrp W Word B X Word B W X x 0 W 1 W Word B
53 simpl2r G Smgrp W Word B X Word B W X x 0 W 1 X Word B
54 fzoval W 0 ..^ W = 0 W 1
55 14 54 syl G Smgrp W Word B X Word B W X 0 ..^ W = 0 W 1
56 55 eleq2d G Smgrp W Word B X Word B W X x 0 ..^ W x 0 W 1
57 56 biimpar G Smgrp W Word B X Word B W X x 0 W 1 x 0 ..^ W
58 ccatval1 W Word B X Word B x 0 ..^ W W ++ X x = W x
59 52 53 57 58 syl3anc G Smgrp W Word B X Word B W X x 0 W 1 W ++ X x = W x
60 35 59 seqfveq G Smgrp W Word B X Word B W X seq 0 + ˙ W ++ X W 1 = seq 0 + ˙ W W 1
61 23 addlidd G Smgrp W Word B X Word B W X 0 + W = W
62 29 61 eqtr4d G Smgrp W Word B X Word B W X W - 1 + 1 = 0 + W
63 62 seqeq1d G Smgrp W Word B X Word B W X seq W - 1 + 1 + ˙ W ++ X = seq 0 + W + ˙ W ++ X
64 23 24 addcomd G Smgrp W Word B X Word B W X W + X = X + W
65 64 oveq1d G Smgrp W Word B X Word B W X W + X - 1 = X + W - 1
66 24 23 25 addsubd G Smgrp W Word B X Word B W X X + W - 1 = X - 1 + W
67 65 66 eqtrd G Smgrp W Word B X Word B W X W + X - 1 = X - 1 + W
68 63 67 fveq12d G Smgrp W Word B X Word B W X seq W - 1 + 1 + ˙ W ++ X W + X - 1 = seq 0 + W + ˙ W ++ X X - 1 + W
69 20 34 eleqtrdi G Smgrp W Word B X Word B W X X 1 0
70 simpl2l G Smgrp W Word B X Word B W X x 0 X 1 W Word B
71 simpl2r G Smgrp W Word B X Word B W X x 0 X 1 X Word B
72 fzoval X 0 ..^ X = 0 X 1
73 43 72 syl G Smgrp W Word B X Word B W X 0 ..^ X = 0 X 1
74 73 eleq2d G Smgrp W Word B X Word B W X x 0 ..^ X x 0 X 1
75 74 biimpar G Smgrp W Word B X Word B W X x 0 X 1 x 0 ..^ X
76 ccatval3 W Word B X Word B x 0 ..^ X W ++ X x + W = X x
77 70 71 75 76 syl3anc G Smgrp W Word B X Word B W X x 0 X 1 W ++ X x + W = X x
78 77 eqcomd G Smgrp W Word B X Word B W X x 0 X 1 X x = W ++ X x + W
79 69 14 78 seqshft2 G Smgrp W Word B X Word B W X seq 0 + ˙ X X 1 = seq 0 + W + ˙ W ++ X X - 1 + W
80 68 79 eqtr4d G Smgrp W Word B X Word B W X seq W - 1 + 1 + ˙ W ++ X W + X - 1 = seq 0 + ˙ X X 1
81 60 80 oveq12d G Smgrp W Word B X Word B W X seq 0 + ˙ W ++ X W 1 + ˙ seq W - 1 + 1 + ˙ W ++ X W + X - 1 = seq 0 + ˙ W W 1 + ˙ seq 0 + ˙ X X 1
82 51 81 eqtrd G Smgrp W Word B X Word B W X seq 0 + ˙ W ++ X W + X - 1 = seq 0 + ˙ W W 1 + ˙ seq 0 + ˙ X X 1
83 13 18 nnaddcld G Smgrp W Word B X Word B W X W + X
84 nnm1nn0 W + X W + X - 1 0
85 83 84 syl G Smgrp W Word B X Word B W X W + X - 1 0
86 85 34 eleqtrdi G Smgrp W Word B X Word B W X W + X - 1 0
87 1 2 3 86 49 gsumval2 G Smgrp W Word B X Word B W X G W ++ X = seq 0 + ˙ W ++ X W + X - 1
88 simp2l G Smgrp W Word B X Word B W X W Word B
89 wrdf W Word B W : 0 ..^ W B
90 88 89 syl G Smgrp W Word B X Word B W X W : 0 ..^ W B
91 55 feq2d G Smgrp W Word B X Word B W X W : 0 ..^ W B W : 0 W 1 B
92 90 91 mpbid G Smgrp W Word B X Word B W X W : 0 W 1 B
93 1 2 3 35 92 gsumval2 G Smgrp W Word B X Word B W X G W = seq 0 + ˙ W W 1
94 simp2r G Smgrp W Word B X Word B W X X Word B
95 wrdf X Word B X : 0 ..^ X B
96 94 95 syl G Smgrp W Word B X Word B W X X : 0 ..^ X B
97 73 feq2d G Smgrp W Word B X Word B W X X : 0 ..^ X B X : 0 X 1 B
98 96 97 mpbid G Smgrp W Word B X Word B W X X : 0 X 1 B
99 1 2 3 69 98 gsumval2 G Smgrp W Word B X Word B W X G X = seq 0 + ˙ X X 1
100 93 99 oveq12d G Smgrp W Word B X Word B W X G W + ˙ G X = seq 0 + ˙ W W 1 + ˙ seq 0 + ˙ X X 1
101 82 87 100 3eqtr4d G Smgrp W Word B X Word B W X G W ++ X = G W + ˙ G X