Metamath Proof Explorer


Theorem gsumsn

Description: Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsn.b B = Base G
gsumsn.s k = M A = C
Assertion gsumsn G Mnd M V C B G k M A = C

Proof

Step Hyp Ref Expression
1 gsumsn.b B = Base G
2 gsumsn.s k = M A = C
3 nfcv _ k C
4 3 1 2 gsumsnf G Mnd M V C B G k M A = C