Metamath Proof Explorer
Description: Group sum of a singleton, deduction form. (Contributed by Thierry
Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsumsnd.b |
|
|
|
gsumsnd.g |
|
|
|
gsumsnd.m |
|
|
|
gsumsnd.c |
|
|
|
gsumsnd.s |
|
|
Assertion |
gsumsnd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumsnd.b |
|
| 2 |
|
gsumsnd.g |
|
| 3 |
|
gsumsnd.m |
|
| 4 |
|
gsumsnd.c |
|
| 5 |
|
gsumsnd.s |
|
| 6 |
|
nfv |
|
| 7 |
|
nfcv |
|
| 8 |
1 2 3 4 5 6 7
|
gsumsnfd |
|