Metamath Proof Explorer


Theorem gsumsnd

Description: Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsnd.b B = Base G
gsumsnd.g φ G Mnd
gsumsnd.m φ M V
gsumsnd.c φ C B
gsumsnd.s φ k = M A = C
Assertion gsumsnd φ G k M A = C

Proof

Step Hyp Ref Expression
1 gsumsnd.b B = Base G
2 gsumsnd.g φ G Mnd
3 gsumsnd.m φ M V
4 gsumsnd.c φ C B
5 gsumsnd.s φ k = M A = C
6 nfv k φ
7 nfcv _ k C
8 1 2 3 4 5 6 7 gsumsnfd φ G k M A = C