Metamath Proof Explorer
Description: Group sum of a singleton, deduction form. (Contributed by Thierry
Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsumsnd.b |
|
|
|
gsumsnd.g |
|
|
|
gsumsnd.m |
|
|
|
gsumsnd.c |
|
|
|
gsumsnd.s |
|
|
Assertion |
gsumsnd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsnd.b |
|
2 |
|
gsumsnd.g |
|
3 |
|
gsumsnd.m |
|
4 |
|
gsumsnd.c |
|
5 |
|
gsumsnd.s |
|
6 |
|
nfv |
|
7 |
|
nfcv |
|
8 |
1 2 3 4 5 6 7
|
gsumsnfd |
|