Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumsnf
Metamath Proof Explorer
Description: Group sum of a singleton, using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by Mario Carneiro , 19-Dec-2014) (Revised by Thierry Arnoux , 28-Mar-2018) (Proof
shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumsnf.c
⊢ Ⅎ _ k C
gsumsnf.b
⊢ B = Base G
gsumsnf.s
⊢ k = M → A = C
Assertion
gsumsnf
⊢ G ∈ Mnd ∧ M ∈ V ∧ C ∈ B → ∑ G k ∈ M A = C
Proof
Step
Hyp
Ref
Expression
1
gsumsnf.c
⊢ Ⅎ _ k C
2
gsumsnf.b
⊢ B = Base G
3
gsumsnf.s
⊢ k = M → A = C
4
simp1
⊢ G ∈ Mnd ∧ M ∈ V ∧ C ∈ B → G ∈ Mnd
5
simp2
⊢ G ∈ Mnd ∧ M ∈ V ∧ C ∈ B → M ∈ V
6
simp3
⊢ G ∈ Mnd ∧ M ∈ V ∧ C ∈ B → C ∈ B
7
3
adantl
⊢ G ∈ Mnd ∧ M ∈ V ∧ C ∈ B ∧ k = M → A = C
8
nfv
⊢ Ⅎ k G ∈ Mnd
9
nfv
⊢ Ⅎ k M ∈ V
10
1
nfel1
⊢ Ⅎ k C ∈ B
11
8 9 10
nf3an
⊢ Ⅎ k G ∈ Mnd ∧ M ∈ V ∧ C ∈ B
12
2 4 5 6 7 11 1
gsumsnfd
⊢ G ∈ Mnd ∧ M ∈ V ∧ C ∈ B → ∑ G k ∈ M A = C