Metamath Proof Explorer


Theorem gsumsnf

Description: Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsnf.c _ k C
gsumsnf.b B = Base G
gsumsnf.s k = M A = C
Assertion gsumsnf G Mnd M V C B G k M A = C

Proof

Step Hyp Ref Expression
1 gsumsnf.c _ k C
2 gsumsnf.b B = Base G
3 gsumsnf.s k = M A = C
4 simp1 G Mnd M V C B G Mnd
5 simp2 G Mnd M V C B M V
6 simp3 G Mnd M V C B C B
7 3 adantl G Mnd M V C B k = M A = C
8 nfv k G Mnd
9 nfv k M V
10 1 nfel1 k C B
11 8 9 10 nf3an k G Mnd M V C B
12 2 4 5 6 7 11 1 gsumsnfd G Mnd M V C B G k M A = C