Description: Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsnf.c | |
|
| gsumsnf.b | |
||
| gsumsnf.s | |
||
| Assertion | gsumsnf | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnf.c | |
|
| 2 | gsumsnf.b | |
|
| 3 | gsumsnf.s | |
|
| 4 | simp1 | |
|
| 5 | simp2 | |
|
| 6 | simp3 | |
|
| 7 | 3 | adantl | |
| 8 | nfv | |
|
| 9 | nfv | |
|
| 10 | 1 | nfel1 | |
| 11 | 8 9 10 | nf3an | |
| 12 | 2 4 5 6 7 11 1 | gsumsnfd | |