Metamath Proof Explorer


Theorem gsumsnfd

Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Revised by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsnd.b B = Base G
gsumsnd.g φ G Mnd
gsumsnd.m φ M V
gsumsnd.c φ C B
gsumsnd.s φ k = M A = C
gsumsnfd.p k φ
gsumsnfd.c _ k C
Assertion gsumsnfd φ G k M A = C

Proof

Step Hyp Ref Expression
1 gsumsnd.b B = Base G
2 gsumsnd.g φ G Mnd
3 gsumsnd.m φ M V
4 gsumsnd.c φ C B
5 gsumsnd.s φ k = M A = C
6 gsumsnfd.p k φ
7 gsumsnfd.c _ k C
8 elsni k M k = M
9 8 5 sylan2 φ k M A = C
10 6 9 mpteq2da φ k M A = k M C
11 10 oveq2d φ G k M A = G k M C
12 snfi M Fin
13 12 a1i φ M Fin
14 eqid G = G
15 7 1 14 gsumconstf G Mnd M Fin C B G k M C = M G C
16 2 13 4 15 syl3anc φ G k M C = M G C
17 11 16 eqtrd φ G k M A = M G C
18 hashsng M V M = 1
19 3 18 syl φ M = 1
20 19 oveq1d φ M G C = 1 G C
21 1 14 mulg1 C B 1 G C = C
22 4 21 syl φ 1 G C = C
23 17 20 22 3eqtrd φ G k M A = C