Step |
Hyp |
Ref |
Expression |
1 |
|
gsumspl.b |
|
2 |
|
gsumspl.m |
|
3 |
|
gsumspl.s |
|
4 |
|
gsumspl.f |
|
5 |
|
gsumspl.t |
|
6 |
|
gsumspl.x |
|
7 |
|
gsumspl.y |
|
8 |
|
gsumspl.eq |
|
9 |
8
|
oveq2d |
|
10 |
9
|
oveq1d |
|
11 |
|
splval |
|
12 |
3 4 5 6 11
|
syl13anc |
|
13 |
12
|
oveq2d |
|
14 |
|
pfxcl |
|
15 |
3 14
|
syl |
|
16 |
|
ccatcl |
|
17 |
15 6 16
|
syl2anc |
|
18 |
|
swrdcl |
|
19 |
3 18
|
syl |
|
20 |
|
eqid |
|
21 |
1 20
|
gsumccat |
|
22 |
2 17 19 21
|
syl3anc |
|
23 |
1 20
|
gsumccat |
|
24 |
2 15 6 23
|
syl3anc |
|
25 |
24
|
oveq1d |
|
26 |
13 22 25
|
3eqtrd |
|
27 |
|
splval |
|
28 |
3 4 5 7 27
|
syl13anc |
|
29 |
28
|
oveq2d |
|
30 |
|
ccatcl |
|
31 |
15 7 30
|
syl2anc |
|
32 |
1 20
|
gsumccat |
|
33 |
2 31 19 32
|
syl3anc |
|
34 |
1 20
|
gsumccat |
|
35 |
2 15 7 34
|
syl3anc |
|
36 |
35
|
oveq1d |
|
37 |
29 33 36
|
3eqtrd |
|
38 |
10 26 37
|
3eqtr4d |
|