Metamath Proof Explorer


Theorem gsumsplit

Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumsplit.b B = Base G
gsumsplit.z 0 ˙ = 0 G
gsumsplit.p + ˙ = + G
gsumsplit.g φ G CMnd
gsumsplit.a φ A V
gsumsplit.f φ F : A B
gsumsplit.w φ finSupp 0 ˙ F
gsumsplit.i φ C D =
gsumsplit.u φ A = C D
Assertion gsumsplit φ G F = G F C + ˙ G F D

Proof

Step Hyp Ref Expression
1 gsumsplit.b B = Base G
2 gsumsplit.z 0 ˙ = 0 G
3 gsumsplit.p + ˙ = + G
4 gsumsplit.g φ G CMnd
5 gsumsplit.a φ A V
6 gsumsplit.f φ F : A B
7 gsumsplit.w φ finSupp 0 ˙ F
8 gsumsplit.i φ C D =
9 gsumsplit.u φ A = C D
10 eqid Cntz G = Cntz G
11 cmnmnd G CMnd G Mnd
12 4 11 syl φ G Mnd
13 1 10 4 6 cntzcmnf φ ran F Cntz G ran F
14 1 2 3 10 12 5 6 13 7 8 9 gsumzsplit φ G F = G F C + ˙ G F D