Metamath Proof Explorer


Theorem gsumsplit2

Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumsplit2.b B = Base G
gsumsplit2.z 0 ˙ = 0 G
gsumsplit2.p + ˙ = + G
gsumsplit2.g φ G CMnd
gsumsplit2.a φ A V
gsumsplit2.f φ k A X B
gsumsplit2.w φ finSupp 0 ˙ k A X
gsumsplit2.i φ C D =
gsumsplit2.u φ A = C D
Assertion gsumsplit2 φ G k A X = G k C X + ˙ G k D X

Proof

Step Hyp Ref Expression
1 gsumsplit2.b B = Base G
2 gsumsplit2.z 0 ˙ = 0 G
3 gsumsplit2.p + ˙ = + G
4 gsumsplit2.g φ G CMnd
5 gsumsplit2.a φ A V
6 gsumsplit2.f φ k A X B
7 gsumsplit2.w φ finSupp 0 ˙ k A X
8 gsumsplit2.i φ C D =
9 gsumsplit2.u φ A = C D
10 6 fmpttd φ k A X : A B
11 1 2 3 4 5 10 7 8 9 gsumsplit φ G k A X = G k A X C + ˙ G k A X D
12 ssun1 C C D
13 12 9 sseqtrrid φ C A
14 13 resmptd φ k A X C = k C X
15 14 oveq2d φ G k A X C = G k C X
16 ssun2 D C D
17 16 9 sseqtrrid φ D A
18 17 resmptd φ k A X D = k D X
19 18 oveq2d φ G k A X D = G k D X
20 15 19 oveq12d φ G k A X C + ˙ G k A X D = G k C X + ˙ G k D X
21 11 20 eqtrd φ G k A X = G k C X + ˙ G k D X