Metamath Proof Explorer


Theorem gsumsub

Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumsub.b B = Base G
gsumsub.z 0 ˙ = 0 G
gsumsub.m - ˙ = - G
gsumsub.g φ G Abel
gsumsub.a φ A V
gsumsub.f φ F : A B
gsumsub.h φ H : A B
gsumsub.fn φ finSupp 0 ˙ F
gsumsub.hn φ finSupp 0 ˙ H
Assertion gsumsub φ G F - ˙ f H = G F - ˙ G H

Proof

Step Hyp Ref Expression
1 gsumsub.b B = Base G
2 gsumsub.z 0 ˙ = 0 G
3 gsumsub.m - ˙ = - G
4 gsumsub.g φ G Abel
5 gsumsub.a φ A V
6 gsumsub.f φ F : A B
7 gsumsub.h φ H : A B
8 gsumsub.fn φ finSupp 0 ˙ F
9 gsumsub.hn φ finSupp 0 ˙ H
10 eqid + G = + G
11 ablcmn G Abel G CMnd
12 4 11 syl φ G CMnd
13 eqid inv g G = inv g G
14 ablgrp G Abel G Grp
15 4 14 syl φ G Grp
16 1 13 15 grpinvf1o φ inv g G : B 1-1 onto B
17 f1of inv g G : B 1-1 onto B inv g G : B B
18 16 17 syl φ inv g G : B B
19 fco inv g G : B B H : A B inv g G H : A B
20 18 7 19 syl2anc φ inv g G H : A B
21 2 fvexi 0 ˙ V
22 21 a1i φ 0 ˙ V
23 1 fvexi B V
24 23 a1i φ B V
25 2 13 grpinvid G Grp inv g G 0 ˙ = 0 ˙
26 15 25 syl φ inv g G 0 ˙ = 0 ˙
27 22 7 18 5 24 9 26 fsuppco2 φ finSupp 0 ˙ inv g G H
28 1 2 10 12 5 6 20 8 27 gsumadd φ G F + G f inv g G H = G F + G G inv g G H
29 1 2 13 4 5 7 9 gsuminv φ G inv g G H = inv g G G H
30 29 oveq2d φ G F + G G inv g G H = G F + G inv g G G H
31 28 30 eqtrd φ G F + G f inv g G H = G F + G inv g G G H
32 6 ffvelrnda φ k A F k B
33 7 ffvelrnda φ k A H k B
34 1 10 13 3 grpsubval F k B H k B F k - ˙ H k = F k + G inv g G H k
35 32 33 34 syl2anc φ k A F k - ˙ H k = F k + G inv g G H k
36 35 mpteq2dva φ k A F k - ˙ H k = k A F k + G inv g G H k
37 6 feqmptd φ F = k A F k
38 7 feqmptd φ H = k A H k
39 5 32 33 37 38 offval2 φ F - ˙ f H = k A F k - ˙ H k
40 fvexd φ k A inv g G H k V
41 18 feqmptd φ inv g G = x B inv g G x
42 fveq2 x = H k inv g G x = inv g G H k
43 33 38 41 42 fmptco φ inv g G H = k A inv g G H k
44 5 32 40 37 43 offval2 φ F + G f inv g G H = k A F k + G inv g G H k
45 36 39 44 3eqtr4d φ F - ˙ f H = F + G f inv g G H
46 45 oveq2d φ G F - ˙ f H = G F + G f inv g G H
47 1 2 12 5 6 8 gsumcl φ G F B
48 1 2 12 5 7 9 gsumcl φ G H B
49 1 10 13 3 grpsubval G F B G H B G F - ˙ G H = G F + G inv g G G H
50 47 48 49 syl2anc φ G F - ˙ G H = G F + G inv g G G H
51 31 46 50 3eqtr4d φ G F - ˙ f H = G F - ˙ G H