Metamath Proof Explorer


Theorem gsumsubgcl

Description: Closure of a group sum in a subgroup. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumsubgcl.z 0 ˙ = 0 G
gsumsubgcl.g φ G Abel
gsumsubgcl.a φ A V
gsumsubgcl.s φ S SubGrp G
gsumsubgcl.f φ F : A S
gsumsubgcl.w φ finSupp 0 ˙ F
Assertion gsumsubgcl φ G F S

Proof

Step Hyp Ref Expression
1 gsumsubgcl.z 0 ˙ = 0 G
2 gsumsubgcl.g φ G Abel
3 gsumsubgcl.a φ A V
4 gsumsubgcl.s φ S SubGrp G
5 gsumsubgcl.f φ F : A S
6 gsumsubgcl.w φ finSupp 0 ˙ F
7 ablcmn G Abel G CMnd
8 2 7 syl φ G CMnd
9 subgsubm S SubGrp G S SubMnd G
10 4 9 syl φ S SubMnd G
11 1 8 3 10 5 6 gsumsubmcl φ G F S