Metamath Proof Explorer


Theorem gsumsubm

Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014)

Ref Expression
Hypotheses gsumsubm.a φ A V
gsumsubm.s φ S SubMnd G
gsumsubm.f φ F : A S
gsumsubm.h H = G 𝑠 S
Assertion gsumsubm φ G F = H F

Proof

Step Hyp Ref Expression
1 gsumsubm.a φ A V
2 gsumsubm.s φ S SubMnd G
3 gsumsubm.f φ F : A S
4 gsumsubm.h H = G 𝑠 S
5 eqid Base G = Base G
6 eqid + G = + G
7 submrcl S SubMnd G G Mnd
8 2 7 syl φ G Mnd
9 5 submss S SubMnd G S Base G
10 2 9 syl φ S Base G
11 eqid 0 G = 0 G
12 11 subm0cl S SubMnd G 0 G S
13 2 12 syl φ 0 G S
14 5 6 11 mndlrid G Mnd x Base G 0 G + G x = x x + G 0 G = x
15 8 14 sylan φ x Base G 0 G + G x = x x + G 0 G = x
16 5 6 4 8 1 10 3 13 15 gsumress φ G F = H F