Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Iterated sums in a monoid
gsumsubm
Next ⟩
gsumz
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsumsubm
Description:
Evaluate a group sum in a submonoid.
(Contributed by
Mario Carneiro
, 19-Dec-2014)
Ref
Expression
Hypotheses
gsumsubm.a
⊢
φ
→
A
∈
V
gsumsubm.s
⊢
φ
→
S
∈
SubMnd
⁡
G
gsumsubm.f
⊢
φ
→
F
:
A
⟶
S
gsumsubm.h
⊢
H
=
G
↾
𝑠
S
Assertion
gsumsubm
⊢
φ
→
∑
G
F
=
∑
H
F
Proof
Step
Hyp
Ref
Expression
1
gsumsubm.a
⊢
φ
→
A
∈
V
2
gsumsubm.s
⊢
φ
→
S
∈
SubMnd
⁡
G
3
gsumsubm.f
⊢
φ
→
F
:
A
⟶
S
4
gsumsubm.h
⊢
H
=
G
↾
𝑠
S
5
eqid
⊢
Base
G
=
Base
G
6
eqid
⊢
+
G
=
+
G
7
submrcl
⊢
S
∈
SubMnd
⁡
G
→
G
∈
Mnd
8
2
7
syl
⊢
φ
→
G
∈
Mnd
9
5
submss
⊢
S
∈
SubMnd
⁡
G
→
S
⊆
Base
G
10
2
9
syl
⊢
φ
→
S
⊆
Base
G
11
eqid
⊢
0
G
=
0
G
12
11
subm0cl
⊢
S
∈
SubMnd
⁡
G
→
0
G
∈
S
13
2
12
syl
⊢
φ
→
0
G
∈
S
14
5
6
11
mndlrid
⊢
G
∈
Mnd
∧
x
∈
Base
G
→
0
G
+
G
x
=
x
∧
x
+
G
0
G
=
x
15
8
14
sylan
⊢
φ
∧
x
∈
Base
G
→
0
G
+
G
x
=
x
∧
x
+
G
0
G
=
x
16
5
6
4
8
1
10
3
13
15
gsumress
⊢
φ
→
∑
G
F
=
∑
H
F